A low-stress dual-modal imaging system and dead chicken detection method for commercial layer farms

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Dihua Wu , Yi Lu , Donger Yang , Di Cui , Mingchuan Zhou , Jinming Pan , Yibin Ying
{"title":"A low-stress dual-modal imaging system and dead chicken detection method for commercial layer farms","authors":"Dihua Wu ,&nbsp;Yi Lu ,&nbsp;Donger Yang ,&nbsp;Di Cui ,&nbsp;Mingchuan Zhou ,&nbsp;Jinming Pan ,&nbsp;Yibin Ying","doi":"10.1016/j.inffus.2025.103787","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional methods for detecting dead chickens in commercial poultry farming rely heavily on labor-intensive manual inspections, which are prone to inefficiency, biosecurity risks, and human error. While sensor-based and computer vision techniques have improved automated detection, single-modality methods still face significant limitations: visible-light imaging requires stressful supplemental lighting, while thermal imaging lacks critical textural details. Although RGB-thermal (RGB-T) fusion alleviates some of these challenges, current systems often struggle with spatiotemporal misalignment and simplistic fusion techniques, resulting in redundancy and performance bottlenecks. This study introduces a low-stress, spatiotemporally synchronized RGB-T dual-modal imaging system combined with an end-to-end Dual-Stream Dead Chicken Detection Network (DS-DCDNet). By employing spectral beam splitting and multi-source synchronization, the hardware enables real-time, aligned RGB-T data acquisition. DS-DCDNet leverages adaptive feature self-fusion and dual-stream interactions, overcoming the limitations of manual parameter dependencies and improving detection accuracy by robustly integrating features at the representation level. Experimental results demonstrate that DS-DCDNet outperforms existing weighted and layer fusion methods, offering superior accuracy and stress-free detection capabilities. This research provides a scalable solution for high-precision automated dead chicken detection, meeting the growing demands of modern poultry farming. Related demonstration videos are available on YouTube (<span><span>https://youtu.be/Pr1GjgX6kuw?si=kKRLe3PEDBlPQrSq</span><svg><path></path></svg></span>) and YouKu (<span><span>https://v.youku.com/video?vid=XNjQ3NTMwNjM2NA==</span><svg><path></path></svg></span>) for reference.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103787"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008498","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional methods for detecting dead chickens in commercial poultry farming rely heavily on labor-intensive manual inspections, which are prone to inefficiency, biosecurity risks, and human error. While sensor-based and computer vision techniques have improved automated detection, single-modality methods still face significant limitations: visible-light imaging requires stressful supplemental lighting, while thermal imaging lacks critical textural details. Although RGB-thermal (RGB-T) fusion alleviates some of these challenges, current systems often struggle with spatiotemporal misalignment and simplistic fusion techniques, resulting in redundancy and performance bottlenecks. This study introduces a low-stress, spatiotemporally synchronized RGB-T dual-modal imaging system combined with an end-to-end Dual-Stream Dead Chicken Detection Network (DS-DCDNet). By employing spectral beam splitting and multi-source synchronization, the hardware enables real-time, aligned RGB-T data acquisition. DS-DCDNet leverages adaptive feature self-fusion and dual-stream interactions, overcoming the limitations of manual parameter dependencies and improving detection accuracy by robustly integrating features at the representation level. Experimental results demonstrate that DS-DCDNet outperforms existing weighted and layer fusion methods, offering superior accuracy and stress-free detection capabilities. This research provides a scalable solution for high-precision automated dead chicken detection, meeting the growing demands of modern poultry farming. Related demonstration videos are available on YouTube (https://youtu.be/Pr1GjgX6kuw?si=kKRLe3PEDBlPQrSq) and YouKu (https://v.youku.com/video?vid=XNjQ3NTMwNjM2NA==) for reference.
一种用于商业蛋鸡养殖场的低应力双峰成像系统及死鸡检测方法
在商业家禽养殖中检测死鸡的传统方法严重依赖劳动密集型的人工检查,这容易导致效率低下、生物安全风险和人为错误。虽然基于传感器和计算机视觉技术已经改进了自动检测,但单模态方法仍然面临着重大的局限性:可见光成像需要紧张的补充照明,而热成像缺乏关键的纹理细节。尽管rgb -热(RGB-T)融合缓解了这些挑战,但目前的系统经常受到时空不一致和融合技术过于简单的困扰,从而导致冗余和性能瓶颈。本研究介绍了一种低应力、时空同步的RGB-T双模成像系统,该系统结合了端到端双流死鸡检测网络(DS-DCDNet)。通过采用光谱分束和多源同步,硬件可以实现实时、对齐的RGB-T数据采集。DS-DCDNet利用自适应特征自融合和双流交互,克服了人工参数依赖的局限性,并通过在表示层对特征进行鲁棒集成来提高检测精度。实验结果表明,DS-DCDNet优于现有的加权和层融合方法,具有更高的精度和无应力检测能力。本研究为高精度自动死鸡检测提供了一种可扩展的解决方案,满足了现代家禽养殖日益增长的需求。相关演示视频可在YouTube (https://youtu.be/Pr1GjgX6kuw?si=kKRLe3PEDBlPQrSq)和优酷(https://v.youku.com/video?vid=XNjQ3NTMwNjM2NA==)以供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信