Advancing Air Pollution Exposure Models with Open-Vocabulary Object Detection and Semantic Segmentation of Street-View Images.

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhendong Yuan,Jules Kerckhoffs,Pi-I Debby Lin,Esra Suel,Hao Li,Li Yi,Marcia Pescador Jimenez,Peter James,Kees de Hoogh,Gerard Hoek,Roel Vermeulen
{"title":"Advancing Air Pollution Exposure Models with Open-Vocabulary Object Detection and Semantic Segmentation of Street-View Images.","authors":"Zhendong Yuan,Jules Kerckhoffs,Pi-I Debby Lin,Esra Suel,Hao Li,Li Yi,Marcia Pescador Jimenez,Peter James,Kees de Hoogh,Gerard Hoek,Roel Vermeulen","doi":"10.1021/acs.est.5c09687","DOIUrl":null,"url":null,"abstract":"Mobile monitoring campaigns combined with land use regression (LUR) models effectively capture fine-scale spatial variations in urban air pollution. However, traditional predictor variables often fail to capture the nuances of the built environment and undocumented emission sources. To address this, we developed a framework integrating customizable object-level and segmentation-level visual features from street-view images into stepwise regression and random-forest-based LUR models. Using 5.7 million mobile air pollution measurements (2019-2020) and 0.37 million street-view images (2008-2024), we mapped nitrogen dioxide (NO2), black carbon (BC), and ultrafine particles (UFP) across 46,664 road segments in Amsterdam, The Netherlands. Incorporating street-view images improved model performance, increasing R2 by 0.01-0.05 and reducing mean absolute errors by 0.7-10.3%. Sensitivity analyses indicated that key street-view-derived visual features remained stable across years and seasons. Using images from nearby years expanded training instances, thereby enhancing alignment with mobile measurements at fine granularity. Our open-vocabulary object detection module identified influential but previously unrecognized object predictors, such as chimneys, traffic lights, and shops. Combined with segmentation-derived features (e.g., walls, roads, grass), street-view images contributed 8-18% feature importance to model predictions. These findings highlight the potential of visual data in enhancing hyperlocal air pollution mapping and exposure assessment.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"19 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c09687","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile monitoring campaigns combined with land use regression (LUR) models effectively capture fine-scale spatial variations in urban air pollution. However, traditional predictor variables often fail to capture the nuances of the built environment and undocumented emission sources. To address this, we developed a framework integrating customizable object-level and segmentation-level visual features from street-view images into stepwise regression and random-forest-based LUR models. Using 5.7 million mobile air pollution measurements (2019-2020) and 0.37 million street-view images (2008-2024), we mapped nitrogen dioxide (NO2), black carbon (BC), and ultrafine particles (UFP) across 46,664 road segments in Amsterdam, The Netherlands. Incorporating street-view images improved model performance, increasing R2 by 0.01-0.05 and reducing mean absolute errors by 0.7-10.3%. Sensitivity analyses indicated that key street-view-derived visual features remained stable across years and seasons. Using images from nearby years expanded training instances, thereby enhancing alignment with mobile measurements at fine granularity. Our open-vocabulary object detection module identified influential but previously unrecognized object predictors, such as chimneys, traffic lights, and shops. Combined with segmentation-derived features (e.g., walls, roads, grass), street-view images contributed 8-18% feature importance to model predictions. These findings highlight the potential of visual data in enhancing hyperlocal air pollution mapping and exposure assessment.
基于开放词汇目标检测和街景图像语义分割的空气污染暴露模型。
结合土地利用回归(LUR)模型的移动监测活动有效地捕获了城市空气污染的精细尺度空间变化。然而,传统的预测变量往往不能捕捉到建筑环境和未记录的排放源的细微差别。为了解决这个问题,我们开发了一个框架,将街景图像中的可定制对象级和分割级视觉特征集成到逐步回归和基于随机森林的LUR模型中。利用570万张移动空气污染测量数据(2019-2020)和37万张街景图像(2008-2024),我们绘制了荷兰阿姆斯特丹46664个路段的二氧化氮(NO2)、黑碳(BC)和超细颗粒(UFP)。结合街景图像提高了模型性能,R2提高了0.01-0.05,平均绝对误差降低了0.7-10.3%。敏感性分析表明,街景衍生的关键视觉特征在不同年份和季节保持稳定。使用邻近年份的图像扩展训练实例,从而增强与细粒度移动测量的对齐。我们的开放词汇对象检测模块识别了有影响力但以前未被识别的对象预测器,如烟囱、交通灯和商店。结合分割衍生的特征(如墙壁、道路、草地),街景图像对模型预测的特征重要性贡献了8-18%。这些发现突出了视觉数据在加强超局部空气污染制图和暴露评估方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信