{"title":"Phylogenetic and Molecular Evolutionary Insights into Monkeypox Virus Circulation in Shenzhen, China, 2023-2024.","authors":"Chuan Shi, Xiaochen Zheng, Lei Lei, Jinhui Xiao, Guangqing Yu, Yingdong Li, Zhifeng Ma, Minjie Li, Yanling Zeng, Ziquan Lv, Yixiong Chen, Wei Tan, Qianru Wang","doi":"10.3390/v17091214","DOIUrl":null,"url":null,"abstract":"<p><p>The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 to characterize the phylogenetic structure, mutational patterns, and adaptive evolution of locally circulating strains. Phylogenetic analysis showed 95.2% of strains belonged to the dominant lineage C.1.1, with 4.8% in lineage E.3, forming three distinct genetic clusters that indicate multiple independent introductions and established local transmission chains. Whole-genome mutational analysis identified 146 single-nucleotide polymorphisms (SNPs), 81.5% of which carried APOBEC3-mediated mutation signatures (TC > TT and GA > AA), reflecting host-driven antiviral editing. Notably, dynamic changes in low-complexity regions (LCRs) were observed, implying potential roles in genome plasticity and adaptive evolution. Functional analysis revealed non-synonymous substitution biases in host-interacting proteins OPG064, OPG145, and OPG210, while replication protein OPG105 remained conserved. Structural modeling identified critical substitutions in OPG002 (S54F), OPG016 (R84K), and OPG036 (R48C) that may enhance immune evasion by modulating TNF-α signaling, NKG2D engagement, and Type I interferon antagonism. These findings illuminate unique MPXV evolutionary dynamics in Shenzhen, emphasizing continuous genomic surveillance for non-endemic outbreak preparedness.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091214","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 2022 global mpox outbreak highlighted the risk of sustained human-to-human transmission of monkeypox virus (MPXV) in non-endemic regions, yet genomic surveillance in Asia, particularly in China, remains limited. This study conducted horizontal genomic surveillance of MPXV in Shenzhen from 2023 to 2024 to characterize the phylogenetic structure, mutational patterns, and adaptive evolution of locally circulating strains. Phylogenetic analysis showed 95.2% of strains belonged to the dominant lineage C.1.1, with 4.8% in lineage E.3, forming three distinct genetic clusters that indicate multiple independent introductions and established local transmission chains. Whole-genome mutational analysis identified 146 single-nucleotide polymorphisms (SNPs), 81.5% of which carried APOBEC3-mediated mutation signatures (TC > TT and GA > AA), reflecting host-driven antiviral editing. Notably, dynamic changes in low-complexity regions (LCRs) were observed, implying potential roles in genome plasticity and adaptive evolution. Functional analysis revealed non-synonymous substitution biases in host-interacting proteins OPG064, OPG145, and OPG210, while replication protein OPG105 remained conserved. Structural modeling identified critical substitutions in OPG002 (S54F), OPG016 (R84K), and OPG036 (R48C) that may enhance immune evasion by modulating TNF-α signaling, NKG2D engagement, and Type I interferon antagonism. These findings illuminate unique MPXV evolutionary dynamics in Shenzhen, emphasizing continuous genomic surveillance for non-endemic outbreak preparedness.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.