Xueling Zheng, Yinyan Zhou, Yue Yu, Shi Cheng, Feifei Cao, Zhou Sun, Jun Li, Xinfen Yu
{"title":"Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43.","authors":"Xueling Zheng, Yinyan Zhou, Yue Yu, Shi Cheng, Feifei Cao, Zhou Sun, Jun Li, Xinfen Yu","doi":"10.3390/v17091263","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge gaps exist on whether SARS-CoV-2 co-infection alters recombination frequency or induces phylogenetic incongruities in endemic β-coronaviruses (HCoV-OC43, HCoV-HKU1), limiting our understanding of cross-species evolution. Among 7213 COVID-19 and 1590 non-COVID-19 acute respiratory cases (2021-2022) screened via multiplex PCR, β-coronavirus co-infections (SARS-CoV-2 + HCoV-OC43/HKU1) and single HCoV-OC43/HKU1 infections were identified. Whole-genome sequencing (Illumina NovaSeq) was performed. Phylogenies were reconstructed using Bayesian inference (MrBayes). Recombination was assessed via Bootscan analysis (SimPlot). Co-infection prevalence was low (0.51%, mainly HCoV-HKU1: 0.28%, HCoV-OC43: 0.11%). HCoV-OC43 diverged into lineage 1 (genotype K) and a novel recombinant lineage 2 (genotypes F/J/G/I segments), exhibiting accelerated evolution. HCoV-HKU1 remained genetically stable (genotype B). Co-infection status did not influence evolutionary outcomes. While SARS-CoV-2 co-infection may favor transmission of endemic HCoVs, their evolution appears driven by population-level selection, not co-infection. HCoV-OC43 underwent recombination-driven diversification, contrasting sharply with HCoV-HKU1's stasis, highlighting distinct evolutionary strategies. Integrated genomic and clinical surveillance is critical for tracking coronavirus adaptation.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge gaps exist on whether SARS-CoV-2 co-infection alters recombination frequency or induces phylogenetic incongruities in endemic β-coronaviruses (HCoV-OC43, HCoV-HKU1), limiting our understanding of cross-species evolution. Among 7213 COVID-19 and 1590 non-COVID-19 acute respiratory cases (2021-2022) screened via multiplex PCR, β-coronavirus co-infections (SARS-CoV-2 + HCoV-OC43/HKU1) and single HCoV-OC43/HKU1 infections were identified. Whole-genome sequencing (Illumina NovaSeq) was performed. Phylogenies were reconstructed using Bayesian inference (MrBayes). Recombination was assessed via Bootscan analysis (SimPlot). Co-infection prevalence was low (0.51%, mainly HCoV-HKU1: 0.28%, HCoV-OC43: 0.11%). HCoV-OC43 diverged into lineage 1 (genotype K) and a novel recombinant lineage 2 (genotypes F/J/G/I segments), exhibiting accelerated evolution. HCoV-HKU1 remained genetically stable (genotype B). Co-infection status did not influence evolutionary outcomes. While SARS-CoV-2 co-infection may favor transmission of endemic HCoVs, their evolution appears driven by population-level selection, not co-infection. HCoV-OC43 underwent recombination-driven diversification, contrasting sharply with HCoV-HKU1's stasis, highlighting distinct evolutionary strategies. Integrated genomic and clinical surveillance is critical for tracking coronavirus adaptation.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.