{"title":"Heat Stress Induces Partial Resistance to Tomato Bushy Stunt Virus in <i>Nicotiana benthamiana</i> Via Combined Stress Pathways.","authors":"Nurgul Iksat, Almas Madirov, Dana Artykbayeva, Oleksiy Shevchenko, Kuralay Zhanassova, Zhaksat Baikarayev, Zhaksylyk Masalimov","doi":"10.3390/v17091250","DOIUrl":null,"url":null,"abstract":"<p><p>Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of <i>Nicotiana benthamiana</i> L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing heat stress. The experiments were conducted under controlled temperature regimes of 30 °C and 37 °C in combination with virus challenge. Morphological and biochemical analyses in plants under the influence of combined stress showed the alleviation of disease symptoms, reduction in virus content and reduced expression levels of viral proteins P19 and P33. Under conditions of combined stress, accumulation of hydrogen peroxide and malondialdehyde, as well as activation of the antioxidant enzyme catalase, especially in root tissues, were observed. Notably, at 37 °C, virus infection was suppressed despite high levels of oxidative stress, whereas at 30 °C, a marked decrease in the expression of host factors was observed. The results indicate that thermal stress modulates virus-host interactions and activates defense mechanisms, including antioxidant and RNA interference pathways. Therefore, temperature adaptation can be considered as a promising strategy for enhancing plant resistance to viral pathogens under climate changes.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of Nicotiana benthamiana L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing heat stress. The experiments were conducted under controlled temperature regimes of 30 °C and 37 °C in combination with virus challenge. Morphological and biochemical analyses in plants under the influence of combined stress showed the alleviation of disease symptoms, reduction in virus content and reduced expression levels of viral proteins P19 and P33. Under conditions of combined stress, accumulation of hydrogen peroxide and malondialdehyde, as well as activation of the antioxidant enzyme catalase, especially in root tissues, were observed. Notably, at 37 °C, virus infection was suppressed despite high levels of oxidative stress, whereas at 30 °C, a marked decrease in the expression of host factors was observed. The results indicate that thermal stress modulates virus-host interactions and activates defense mechanisms, including antioxidant and RNA interference pathways. Therefore, temperature adaptation can be considered as a promising strategy for enhancing plant resistance to viral pathogens under climate changes.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.