Keerthihan Thiyagarajah, Sascha Hein, Jan Raupach, Nirmal Adeel, Johannes Miller, Maximilian Knapp, Christoph Welsch, Mirco Glitscher, Esra Görgülü, Philipp Stoffers, Pia Lembeck, Jonel Trebicka, Sandra Ciesek, Kai-Henrik Peiffer, Eberhard Hildt
{"title":"Generation and Characterization of HDV-Specific Antisera with Respect to Their Application as Specific and Sensitive Research and Diagnostic Tools.","authors":"Keerthihan Thiyagarajah, Sascha Hein, Jan Raupach, Nirmal Adeel, Johannes Miller, Maximilian Knapp, Christoph Welsch, Mirco Glitscher, Esra Görgülü, Philipp Stoffers, Pia Lembeck, Jonel Trebicka, Sandra Ciesek, Kai-Henrik Peiffer, Eberhard Hildt","doi":"10.3390/v17091220","DOIUrl":null,"url":null,"abstract":"<p><p>The hepatitis D virus (HDV) is a small, defective RNA virus that induces the most severe form of viral hepatitis. Despite its severity, HDV infections are under-diagnosed due to non-standardized and costly diagnostic screening methods. However, limited research has been conducted on characterizing HDV-specific antibodies as alternative tools for diagnosis. Thus, we generated HDV-specific, polyclonal antibodies by immunizing rabbits with the HDV protein, small hepatitis delta antigen (SHDAg), in its oligomeric or denatured form. We identified SHDAg-specific linear epitopes by peptide array analysis and compared them to epitopes identified in HDV-infected patients. Using in silico structural analysis, we show that certain highly immunogenic domains in SHDAg, such as the coiled-coil domain, are masked in the oligomeric conformation of the protein; others, such as the second arginine-rich motif, are exposed. The nuclear localization signal is presumably exposed only by specific interaction of oligomeric HDAg with the HDV-RNA genome. Through surface plasmon resonance analysis, we identified two polyclonal antibodies derived from rabbit antisera with affinities in the lower nanomolar range. These antibodies were used to establish an ELISA that can quantitatively detect HDV virions in vitro and upon further optimization could be used as a promising alternative diagnostic screening method.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091220","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The hepatitis D virus (HDV) is a small, defective RNA virus that induces the most severe form of viral hepatitis. Despite its severity, HDV infections are under-diagnosed due to non-standardized and costly diagnostic screening methods. However, limited research has been conducted on characterizing HDV-specific antibodies as alternative tools for diagnosis. Thus, we generated HDV-specific, polyclonal antibodies by immunizing rabbits with the HDV protein, small hepatitis delta antigen (SHDAg), in its oligomeric or denatured form. We identified SHDAg-specific linear epitopes by peptide array analysis and compared them to epitopes identified in HDV-infected patients. Using in silico structural analysis, we show that certain highly immunogenic domains in SHDAg, such as the coiled-coil domain, are masked in the oligomeric conformation of the protein; others, such as the second arginine-rich motif, are exposed. The nuclear localization signal is presumably exposed only by specific interaction of oligomeric HDAg with the HDV-RNA genome. Through surface plasmon resonance analysis, we identified two polyclonal antibodies derived from rabbit antisera with affinities in the lower nanomolar range. These antibodies were used to establish an ELISA that can quantitatively detect HDV virions in vitro and upon further optimization could be used as a promising alternative diagnostic screening method.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.