Danicsa Karina Espino Carrasco, María Del Rosario Palomino Alcántara, Carmen Graciela Arbulú Pérez Vargas, Briseidy Massiel Santa Cruz Espino, Luis Jhonny Dávila Valdera, Cindy Vargas Cabrera, Madeleine Espino Carrasco, Anny Dávila Valdera, Luz Mirella Agurto Córdova
{"title":"Sustainability of AI-Assisted Mental Health Intervention: A Review of the Literature from 2020-2025.","authors":"Danicsa Karina Espino Carrasco, María Del Rosario Palomino Alcántara, Carmen Graciela Arbulú Pérez Vargas, Briseidy Massiel Santa Cruz Espino, Luis Jhonny Dávila Valdera, Cindy Vargas Cabrera, Madeleine Espino Carrasco, Anny Dávila Valdera, Luz Mirella Agurto Córdova","doi":"10.3390/ijerph22091382","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review examines the role of artificial intelligence (AI) in the development of sustainable mental health interventions through a comprehensive analysis of literature published between 2020 and 2025. In accordance with the PRISMA guidelines, 62 studies were selected from 1652 initially identified records across four major databases. The results revealed four dimensions critical for sustainability: ethical considerations (privacy, informed consent, bias, and human oversight), personalization approaches (federated learning and AI-enhanced therapeutic interventions), risk mitigation strategies (data security, algorithmic bias, and clinical efficacy), and implementation challenges (technical infrastructure, cultural adaptation, and resource allocation). The findings demonstrate that long-term sustainability depends on ethics-driven approaches, resource-efficient techniques such as federated learning, culturally adaptive systems, and appropriate human-AI integration. The study concludes that sustainable mental health AI requires addressing both technical efficacy and ethical integrity while ensuring equitable access across diverse contexts. Future research should focus on longitudinal studies examining the long-term effectiveness and cultural adaptability of AI interventions in resource-limited settings.</p>","PeriodicalId":49056,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"22 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph22091382","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review examines the role of artificial intelligence (AI) in the development of sustainable mental health interventions through a comprehensive analysis of literature published between 2020 and 2025. In accordance with the PRISMA guidelines, 62 studies were selected from 1652 initially identified records across four major databases. The results revealed four dimensions critical for sustainability: ethical considerations (privacy, informed consent, bias, and human oversight), personalization approaches (federated learning and AI-enhanced therapeutic interventions), risk mitigation strategies (data security, algorithmic bias, and clinical efficacy), and implementation challenges (technical infrastructure, cultural adaptation, and resource allocation). The findings demonstrate that long-term sustainability depends on ethics-driven approaches, resource-efficient techniques such as federated learning, culturally adaptive systems, and appropriate human-AI integration. The study concludes that sustainable mental health AI requires addressing both technical efficacy and ethical integrity while ensuring equitable access across diverse contexts. Future research should focus on longitudinal studies examining the long-term effectiveness and cultural adaptability of AI interventions in resource-limited settings.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.