Biosensor-Based Comparison of Stress Responses in Qingtian Paddy Field Carp (Cyprinus carpio var. qingtianensis) and Xingguo Red Carp (Cyprinus carpio var. singuonensis) Under Acute Shallow Water Conditions.
{"title":"Biosensor-Based Comparison of Stress Responses in Qingtian Paddy Field Carp (<i>Cyprinus carpio</i> var. <i>qingtianensis</i>) and Xingguo Red Carp (<i>Cyprinus carpio</i> var. <i>singuonensis</i>) Under Acute Shallow Water Conditions.","authors":"Tengyu Liu, Rui Han, Yuhan Jiang, Jiamin Sun, Haiyun Wu, Qigen Liu","doi":"10.3390/biology14091303","DOIUrl":null,"url":null,"abstract":"<p><p>The domestication of common carp in rice paddies (5-20 cm depth) is challenging, as the fish must withstand drastic fluctuations in temperature and dissolved oxygen, restricted movement, and bird predation without the option of diving. The effects of stress responses in different species of carp in shallow-water environments remain poorly understood, particularly with fluctuating water levels where real-time monitoring is challenging. This study employed a glucose biosensor system enabling real-time monitoring, together with biochemical analysis techniques capable of evaluating multiple physiological indicators, to investigate shallow-water adaptation in Qingtian paddy field carp and Xingguo red carp. Our results quantitatively reveal, for the first time, the differing physiological stress thresholds of the two carp strains under shallow water. The Qingtian paddy field carp exhibited a higher tolerance to shallow water and showed faster recovery from prolonged stress. Furthermore, the total cholesterol and triglyceride contents of Qingtian paddy field carp gradually increased with prolonged shallow-water stress, reflecting the activation of lipid metabolic pathways. These findings highlight the advantages of biosensor technology in aquatic stress research and a strong support of the core element of paddy domesticated carp in the Globally Important Agricultural Heritage Systems.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14091303","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The domestication of common carp in rice paddies (5-20 cm depth) is challenging, as the fish must withstand drastic fluctuations in temperature and dissolved oxygen, restricted movement, and bird predation without the option of diving. The effects of stress responses in different species of carp in shallow-water environments remain poorly understood, particularly with fluctuating water levels where real-time monitoring is challenging. This study employed a glucose biosensor system enabling real-time monitoring, together with biochemical analysis techniques capable of evaluating multiple physiological indicators, to investigate shallow-water adaptation in Qingtian paddy field carp and Xingguo red carp. Our results quantitatively reveal, for the first time, the differing physiological stress thresholds of the two carp strains under shallow water. The Qingtian paddy field carp exhibited a higher tolerance to shallow water and showed faster recovery from prolonged stress. Furthermore, the total cholesterol and triglyceride contents of Qingtian paddy field carp gradually increased with prolonged shallow-water stress, reflecting the activation of lipid metabolic pathways. These findings highlight the advantages of biosensor technology in aquatic stress research and a strong support of the core element of paddy domesticated carp in the Globally Important Agricultural Heritage Systems.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.