{"title":"The Use of Nonhuman Primate Models for Advancing HIV PrEP.","authors":"Elena Bekerman, Christian Callebaut","doi":"10.3390/v17091192","DOIUrl":null,"url":null,"abstract":"<p><p>The global fight against HIV/AIDS has been significantly bolstered by the development and implementation of pre-exposure prophylaxis (PrEP), yet innovation in PrEP interventions, improved adherence and greater access are still needed to maximize its benefit. Nonhuman primate (NHP) infection with simian immunodeficiency virus (SIV) has served as an instrumental animal model in advancing HIV PrEP research. This review comprehensively examines the utility of NHP models in evaluating the efficacy, pharmacokinetics, and safety of diverse PrEP strategies, including oral, injectable, implantable, and topical formulations. It discusses the development of diverse challenge models that simulate human transmission routes and the advantages of NHPs in enabling controlled and mechanistically informative studies. It also highlights the successful translation of pivotal NHP studies evaluating tenofovir-based regimens as well the long-acting agents, cabotegravir and lenacapavir, into the clinical settings, emphasizing the consistently high predictive power of the NHP models for the HIV PrEP clinical efficacy. Finally, it underscores the importance of species-specific pharmacologic considerations and the value of NHP data in informing clinical trial design. As the global community strives to end the HIV epidemic as a public health threat in the absence of an efficacious prophylactic vaccine, NHP models make a critical contribution in the development of next-generation HIV prevention tools.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global fight against HIV/AIDS has been significantly bolstered by the development and implementation of pre-exposure prophylaxis (PrEP), yet innovation in PrEP interventions, improved adherence and greater access are still needed to maximize its benefit. Nonhuman primate (NHP) infection with simian immunodeficiency virus (SIV) has served as an instrumental animal model in advancing HIV PrEP research. This review comprehensively examines the utility of NHP models in evaluating the efficacy, pharmacokinetics, and safety of diverse PrEP strategies, including oral, injectable, implantable, and topical formulations. It discusses the development of diverse challenge models that simulate human transmission routes and the advantages of NHPs in enabling controlled and mechanistically informative studies. It also highlights the successful translation of pivotal NHP studies evaluating tenofovir-based regimens as well the long-acting agents, cabotegravir and lenacapavir, into the clinical settings, emphasizing the consistently high predictive power of the NHP models for the HIV PrEP clinical efficacy. Finally, it underscores the importance of species-specific pharmacologic considerations and the value of NHP data in informing clinical trial design. As the global community strives to end the HIV epidemic as a public health threat in the absence of an efficacious prophylactic vaccine, NHP models make a critical contribution in the development of next-generation HIV prevention tools.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.