Yehia S Mohamed, Samar M Solyman, Abdelrahman M Sedeek, Hasnaa L Kamel, Manar El Samak
{"title":"Comprehensive Genome Analysis of Two Bioactive <i>Brevibacterium</i> Strains Isolated from Marine Sponges from the Red Sea.","authors":"Yehia S Mohamed, Samar M Solyman, Abdelrahman M Sedeek, Hasnaa L Kamel, Manar El Samak","doi":"10.3390/biology14091271","DOIUrl":null,"url":null,"abstract":"<p><p>Marine-derived Actinomycetota have emerged as promising sources of bioactive natural products, particularly filamentous actinomycetes (e.g., <i>Streptomyces</i>). However, members from non-filamentous genera have showed potential biotechnological importance. In this study, we performed a comprehensive genomic characterization of two bioactive <i>Brevibacterium</i> strains, <i>Brevibacterium luteolum (B. luteolum)</i> 26C and <i>Brevibacterium casei (B. casei)</i> 13A, isolated from two Red Sea sponges. Whole-genome sequencing and taxonomic analysis confirmed species-level identification, marking the first documented report of these species within the Red Sea ecosystem. The two strains displayed antimicrobial activity against <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Candida albicans</i>. Additionally, functional annotation revealed multiple genomic islands (GIs) enriched with genes conferring heavy metal resistance, DNA repair enzymes, nutrient acquisition, and mobile genetic elements, highlighting potential evolutionary adaptations to the harsh physicochemical conditions of the Red Sea. Genome mining identified biosynthetic gene clusters, including those encoding ε-poly-L-lysine, tropodithietic acid, ectoine, and carotenoids. The comparative analysis of orthologous gene clusters from both strains and their counterparts from terrestrial ecosystems highlighted potential marine adaptive genetic mechanisms. This study highlights the biosynthetic potential of <i>B. luteolum</i> 26C and <i>B. casei</i> 13A and their ecological role as active competitors and potential defensive associates within the sponge microbiome.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14091271","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine-derived Actinomycetota have emerged as promising sources of bioactive natural products, particularly filamentous actinomycetes (e.g., Streptomyces). However, members from non-filamentous genera have showed potential biotechnological importance. In this study, we performed a comprehensive genomic characterization of two bioactive Brevibacterium strains, Brevibacterium luteolum (B. luteolum) 26C and Brevibacterium casei (B. casei) 13A, isolated from two Red Sea sponges. Whole-genome sequencing and taxonomic analysis confirmed species-level identification, marking the first documented report of these species within the Red Sea ecosystem. The two strains displayed antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. Additionally, functional annotation revealed multiple genomic islands (GIs) enriched with genes conferring heavy metal resistance, DNA repair enzymes, nutrient acquisition, and mobile genetic elements, highlighting potential evolutionary adaptations to the harsh physicochemical conditions of the Red Sea. Genome mining identified biosynthetic gene clusters, including those encoding ε-poly-L-lysine, tropodithietic acid, ectoine, and carotenoids. The comparative analysis of orthologous gene clusters from both strains and their counterparts from terrestrial ecosystems highlighted potential marine adaptive genetic mechanisms. This study highlights the biosynthetic potential of B. luteolum 26C and B. casei 13A and their ecological role as active competitors and potential defensive associates within the sponge microbiome.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.