{"title":"Evaluation of the Dual Antiviral and Immunomodulatory Effects of <i>Phallus indusiatus</i> in a Feline Infectious Peritonitis Model Using PBMCs.","authors":"Chularat Hlaoperm, Wassamon Moyadee, Emwalee Wongsaengnoi, Wiwat Klankaew, Amonpun Rattanasrisomporn, Atchara Paemanee, Kiattawee Choowongkomon, Oumaporn Rungsuriyawiboon, Jatuporn Rattanasrisomporn","doi":"10.3390/vetsci12090847","DOIUrl":null,"url":null,"abstract":"<p><p>Feline infectious peritonitis (FIP) is a progressive and often fatal disease caused by a virulent biotype of feline coronavirus (FCoV). Although antiviral treatments are now available, relapse and resistance remain ongoing concerns. This study investigates the therapeutic potential of <i>P. indusiatus</i>, a medicinal mushroom, for its antiviral and anti-inflammatory activities against FIP. The main protease (FIPV M<sup>pro</sup>) of feline infectious peritonitis virus (FIPV) was recombinantly expressed and purified to facilitate enzyme inhibition screening. <i>P. indusiatus</i> exhibited the strongest FIPV M<sup>pro</sup> inhibitory activity among the 17 mushroom extracts tested (69.2%), showing a notable level of inhibition relative to standard antiviral agents such as lopinavir and ritonavir. To assess its anti-inflammatory potential, PBMCs derived from healthy cats and FIP-associated effusions (FIP fluid) were cultured and stimulated with LPS to induce inflammation. In healthy PBMCs, <i>P. indusiatus</i> significantly reduced nitrite levels, with effects similar to dexamethasone. However, PBMCs from FIP fluid, already in an activated state, showed no additional response. Notably, this study is the first to successfully isolate and culture PBMCs from FIP fluid, providing a new platform for future immunological research. These findings suggest that <i>P. indusiatus</i> possesses both antiviral and anti-inflammatory properties, positioning it as a potential dual-action therapeutic candidate for FIP. Further investigation into cytokine signaling pathways is warranted to clarify its mechanisms of action and advance future therapeutic development.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12090847","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Feline infectious peritonitis (FIP) is a progressive and often fatal disease caused by a virulent biotype of feline coronavirus (FCoV). Although antiviral treatments are now available, relapse and resistance remain ongoing concerns. This study investigates the therapeutic potential of P. indusiatus, a medicinal mushroom, for its antiviral and anti-inflammatory activities against FIP. The main protease (FIPV Mpro) of feline infectious peritonitis virus (FIPV) was recombinantly expressed and purified to facilitate enzyme inhibition screening. P. indusiatus exhibited the strongest FIPV Mpro inhibitory activity among the 17 mushroom extracts tested (69.2%), showing a notable level of inhibition relative to standard antiviral agents such as lopinavir and ritonavir. To assess its anti-inflammatory potential, PBMCs derived from healthy cats and FIP-associated effusions (FIP fluid) were cultured and stimulated with LPS to induce inflammation. In healthy PBMCs, P. indusiatus significantly reduced nitrite levels, with effects similar to dexamethasone. However, PBMCs from FIP fluid, already in an activated state, showed no additional response. Notably, this study is the first to successfully isolate and culture PBMCs from FIP fluid, providing a new platform for future immunological research. These findings suggest that P. indusiatus possesses both antiviral and anti-inflammatory properties, positioning it as a potential dual-action therapeutic candidate for FIP. Further investigation into cytokine signaling pathways is warranted to clarify its mechanisms of action and advance future therapeutic development.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.