Nan Xu, Xiaowei Wei, Ju Zhang, Mingyue Sun, Jinwei Zhang, Zihao Zhao, Xuechen Yang
{"title":"Leaf Nitrogen Allocation Trade-Offs Promote Efficient Utilization of Different Nitrogen Forms in <i>Hemarthria altissima</i>.","authors":"Nan Xu, Xiaowei Wei, Ju Zhang, Mingyue Sun, Jinwei Zhang, Zihao Zhao, Xuechen Yang","doi":"10.3390/biology14091260","DOIUrl":null,"url":null,"abstract":"<p><p>The sharp increase in atmospheric nitrogen deposition has had profound effects on nitrogen availability and the photosynthetic capacity of terrestrial plants. Consequently, understanding the intricate trade-off between nitrogen sources and their allocation within leaves is essential for unraveling the photosynthetic responses of grassland ecosystems to nitrogen deposition. In a series of field experiments, the effects of different nitrogen forms (ammonium and nitrate nitrogen) on nitrogen assimilation and allocation in the C<sub>4</sub> plant <i>Hemarthria altissima</i> were thoroughly investigated. Towards the end of the growing season, <i>H. altissima</i> was observed to exhibit high photosynthetic efficiency. Ammonium nitrogen treatment notably enhanced photosynthetic nitrogen use efficiency (PNUE) by modifying the nitrogen allocation within the leaf's photosynthetic apparatus and leaf area, leading to a significant improvement in photosynthetic efficiency and biomass accumulation. Under ammonium nitrogen treatment, <i>H. altissima</i> directed more nitrogen toward its carboxylation process and other protein-related functions to increase carboxylation efficiency, thereby facilitating the accumulation of photosynthetic products. In contrast, under nitrate nitrogen treatment, the plant balanced growth and light absorption by allocating nitrogen to leaf light-capturing proteins. The application of both ammonium and nitrate nitrogen resulted in increased nitrogen content in the soil, as ammonium nitrogen is converted to nitrate nitrogen through nitrification. The net photosynthetic rate (<i>A<sub>n</sub></i>), nitrogen allocation to photosynthetic components (<i>N<sub>psn</sub></i>), and chlorophyll content per unit area (<i>Chl<sub>area</sub></i>) were all significantly and positively correlated with photosynthetic nitrogen use efficiency (PNUE). Notably, under the sole NH<sub>4</sub><sup>+</sup> treatment, nitrogen allocation to the photosynthetic components increased, which enhanced the NPQ and ETR in <i>H. altissima</i> leaves. These findings suggest that <i>H. altissima</i> preferentially utilizes ammonium nitrogen from the soil, optimizing its PNUE and biomass accumulation through a strategic allocation of nitrogen within its leaves. Further investigation is needed to explore how these nitrogen allocation strategies may vary under different environmental conditions and how they influence ecosystem-level productivity.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14091260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sharp increase in atmospheric nitrogen deposition has had profound effects on nitrogen availability and the photosynthetic capacity of terrestrial plants. Consequently, understanding the intricate trade-off between nitrogen sources and their allocation within leaves is essential for unraveling the photosynthetic responses of grassland ecosystems to nitrogen deposition. In a series of field experiments, the effects of different nitrogen forms (ammonium and nitrate nitrogen) on nitrogen assimilation and allocation in the C4 plant Hemarthria altissima were thoroughly investigated. Towards the end of the growing season, H. altissima was observed to exhibit high photosynthetic efficiency. Ammonium nitrogen treatment notably enhanced photosynthetic nitrogen use efficiency (PNUE) by modifying the nitrogen allocation within the leaf's photosynthetic apparatus and leaf area, leading to a significant improvement in photosynthetic efficiency and biomass accumulation. Under ammonium nitrogen treatment, H. altissima directed more nitrogen toward its carboxylation process and other protein-related functions to increase carboxylation efficiency, thereby facilitating the accumulation of photosynthetic products. In contrast, under nitrate nitrogen treatment, the plant balanced growth and light absorption by allocating nitrogen to leaf light-capturing proteins. The application of both ammonium and nitrate nitrogen resulted in increased nitrogen content in the soil, as ammonium nitrogen is converted to nitrate nitrogen through nitrification. The net photosynthetic rate (An), nitrogen allocation to photosynthetic components (Npsn), and chlorophyll content per unit area (Chlarea) were all significantly and positively correlated with photosynthetic nitrogen use efficiency (PNUE). Notably, under the sole NH4+ treatment, nitrogen allocation to the photosynthetic components increased, which enhanced the NPQ and ETR in H. altissima leaves. These findings suggest that H. altissima preferentially utilizes ammonium nitrogen from the soil, optimizing its PNUE and biomass accumulation through a strategic allocation of nitrogen within its leaves. Further investigation is needed to explore how these nitrogen allocation strategies may vary under different environmental conditions and how they influence ecosystem-level productivity.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.