A Novel Chimeric Fiber-C4/D11 Subunit Vaccine Induces Cross-Neutralizing Antibodies and Provides Better Protection Against Fowl Adenovirus (FAdV) Type 4 and Type 11 Than the Fiber-D11/C4 Subunit Vaccine.
{"title":"A Novel Chimeric Fiber-C4/D11 Subunit Vaccine Induces Cross-Neutralizing Antibodies and Provides Better Protection Against Fowl Adenovirus (FAdV) Type 4 and Type 11 Than the Fiber-D11/C4 Subunit Vaccine.","authors":"Xiangqin Wang, Kuan Zhao, Baishi Lei, Wenming Jiang, Yanliang Qiao, Wanzhe Yuan","doi":"10.3390/vetsci12090920","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread prevalence of different serotypes of fowl adenoviruses (FAdVs) has led to diverse vaccine demands, especially for subunit vaccines targeting FAdV-4 and FAdV-11, which cause hydropericardium-hepatitis syndrome (HHS) and inclusion body hepatitis (IBH), respectively. Although the Fiber protein is known to elicit robust immune protection, further exploration is needed to enhance the production of cross-neutralizing antibodies. This study utilized structural prediction and homology modeling techniques, employing domain-swapping strategy to integrate neutralizing epitope-containing amino acid sequences (274-451aa and 364-543aa) into the shaft domain of the Fiber protein. Two novel chimeric proteins were recombinantly expressed and developed into subunit vaccines: Fiber-C4/D11 and Fiber-D11/C4. Immunogenicity assessments revealed that the Fiber-C4/D11 vaccine group rapidly induced an antibody response against FAdV-11 within 7 days post-vaccination. By 28 days post-vaccination (dpv), the Fiber-C4/D11 vaccine group exhibited significantly higher levels of cross-neutralizing antibodies compared to the Fiber-D11/C4 group (<i>p</i> < 0.05). Challenge experiments demonstrated that both vaccines effectively alleviated clinical symptoms and prevented mortality in SPF chickens. Compared to Fiber-D11/C4, Fiber-C4/D11 significantly reduced body weight loss, liver lesions, viral titers in tissues, and viral shedding. Notably, no cross-neutralizing antibodies were detected following FAdV-4 or FAdV-11 infection, indicating a lack of natural cross-protection between the two serotypes. The chimeric vaccine addressed this gap, offering a promising multivalent approach to mitigate FAdV infections and advancing fowl adenoviral subunit vaccine strategies.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12090920","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread prevalence of different serotypes of fowl adenoviruses (FAdVs) has led to diverse vaccine demands, especially for subunit vaccines targeting FAdV-4 and FAdV-11, which cause hydropericardium-hepatitis syndrome (HHS) and inclusion body hepatitis (IBH), respectively. Although the Fiber protein is known to elicit robust immune protection, further exploration is needed to enhance the production of cross-neutralizing antibodies. This study utilized structural prediction and homology modeling techniques, employing domain-swapping strategy to integrate neutralizing epitope-containing amino acid sequences (274-451aa and 364-543aa) into the shaft domain of the Fiber protein. Two novel chimeric proteins were recombinantly expressed and developed into subunit vaccines: Fiber-C4/D11 and Fiber-D11/C4. Immunogenicity assessments revealed that the Fiber-C4/D11 vaccine group rapidly induced an antibody response against FAdV-11 within 7 days post-vaccination. By 28 days post-vaccination (dpv), the Fiber-C4/D11 vaccine group exhibited significantly higher levels of cross-neutralizing antibodies compared to the Fiber-D11/C4 group (p < 0.05). Challenge experiments demonstrated that both vaccines effectively alleviated clinical symptoms and prevented mortality in SPF chickens. Compared to Fiber-D11/C4, Fiber-C4/D11 significantly reduced body weight loss, liver lesions, viral titers in tissues, and viral shedding. Notably, no cross-neutralizing antibodies were detected following FAdV-4 or FAdV-11 infection, indicating a lack of natural cross-protection between the two serotypes. The chimeric vaccine addressed this gap, offering a promising multivalent approach to mitigate FAdV infections and advancing fowl adenoviral subunit vaccine strategies.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.