Sammaiah Pallerla, Latha Kallur Siddaramaiah, Philipp Mundsperger, Dietmar Katinger, Katharina Fauland, Günter Kreismayr, Robert Weik, Onur Arslan, Mingchao Shen, Gabriel Ozorowski, Wen-Hsin Lee, Andrew B Ward, Sabyasachi Baboo, Jolene K Diedrich, John R Yates, James C Paulson, Tracy Blumen, Daniel Craig, Ryan Swoyer, Maoli Yuan, Leonidas Stamatatos
{"title":"GMP Manufacturing and Characterization of the HIV Booster Immunogen HxB2.WT.Core-C4b for Germline Targeting Vaccine Strategies.","authors":"Sammaiah Pallerla, Latha Kallur Siddaramaiah, Philipp Mundsperger, Dietmar Katinger, Katharina Fauland, Günter Kreismayr, Robert Weik, Onur Arslan, Mingchao Shen, Gabriel Ozorowski, Wen-Hsin Lee, Andrew B Ward, Sabyasachi Baboo, Jolene K Diedrich, John R Yates, James C Paulson, Tracy Blumen, Daniel Craig, Ryan Swoyer, Maoli Yuan, Leonidas Stamatatos","doi":"10.3390/vaccines13090980","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Despite progress in antiretroviral therapy, HIV remains a major global health challenge with over one million new infections annually. An effective vaccine is urgently needed. Germline-targeting immunogens show promise in initiating broadly neutralizing antibody (bNAb) precursors. This study developed a scalable, cGMP-compliant process to manufacture the HIV vaccine booster immunogen HxB2.WT.Core-C4b, a nanoparticle designed to direct bNAb precursor maturation after priming.</p><p><strong>Methods: </strong>A CHO cell platform was established through single-cell cloning from a high-producing stable pool. Upstream and downstream processes were optimized for scalability and yield. Three scales were tested 10 L, 40 L, and 400 L. Key parameters (pH, temperature, feeding, metabolite profiles) were systematically refined. Analytical characterization included glycosylation profiling, electron microscopy, and antigenicity testing. Viral clearance was evaluated per ICH Q5A guidelines.</p><p><strong>Results: </strong>Optimization ensured consistent yields above 130 mg/L, with titers up to 250 mg/L. The selected clone (4E22) demonstrated strong growth, viability, and reproducibility. Glycan occupancy at 18 N-linked sites, including bNAb epitopes (N276, N332), was stable across scales. Over 70% of self-assembling nanoparticle were fully assembled at the GMP level. Antigenicity and purity met cGMP release criteria. Viral clearance achieved >13-log reduction for enveloped and >7-log for non-enveloped viruses.</p><p><strong>Conclusions: </strong>This work establishes a robust, scalable platform for HIV nanoparticle immunogens. Consistent quality and yield across scales support clinical development of HxB2.WT.Core-C4b and provide a model for other glycosylated nanoparticle vaccines. The immunogen is being evaluated in clinical study HVTN 320 (NCT06796686), enabling early testing of next-generation vaccines designed to elicit broadly neutralizing antibodies.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13090980","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Despite progress in antiretroviral therapy, HIV remains a major global health challenge with over one million new infections annually. An effective vaccine is urgently needed. Germline-targeting immunogens show promise in initiating broadly neutralizing antibody (bNAb) precursors. This study developed a scalable, cGMP-compliant process to manufacture the HIV vaccine booster immunogen HxB2.WT.Core-C4b, a nanoparticle designed to direct bNAb precursor maturation after priming.
Methods: A CHO cell platform was established through single-cell cloning from a high-producing stable pool. Upstream and downstream processes were optimized for scalability and yield. Three scales were tested 10 L, 40 L, and 400 L. Key parameters (pH, temperature, feeding, metabolite profiles) were systematically refined. Analytical characterization included glycosylation profiling, electron microscopy, and antigenicity testing. Viral clearance was evaluated per ICH Q5A guidelines.
Results: Optimization ensured consistent yields above 130 mg/L, with titers up to 250 mg/L. The selected clone (4E22) demonstrated strong growth, viability, and reproducibility. Glycan occupancy at 18 N-linked sites, including bNAb epitopes (N276, N332), was stable across scales. Over 70% of self-assembling nanoparticle were fully assembled at the GMP level. Antigenicity and purity met cGMP release criteria. Viral clearance achieved >13-log reduction for enveloped and >7-log for non-enveloped viruses.
Conclusions: This work establishes a robust, scalable platform for HIV nanoparticle immunogens. Consistent quality and yield across scales support clinical development of HxB2.WT.Core-C4b and provide a model for other glycosylated nanoparticle vaccines. The immunogen is being evaluated in clinical study HVTN 320 (NCT06796686), enabling early testing of next-generation vaccines designed to elicit broadly neutralizing antibodies.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.