{"title":"Polyethylene Microplastics and Human Cells: A Critical Review.","authors":"Sharin Valdivia, Camila Riquelme, María Constanza Carrasco, Paulina Weisser, Carolina Añazco, Andrés Alarcón, Sebastián Alarcón","doi":"10.3390/toxics13090756","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. Its persistence in ecosystems and resistance to degradation processes result in the continuous formation of PE-derived MPs. These particles have been detected in human biological matrices, including blood, lungs, placenta, and even the brain, raising increasing concerns about their bioavailability and potential health effects. Once internalized, PE MPs can interact with cellular membranes, induce oxidative stress, inflammation, and apoptosis, and interfere with epigenetic regulatory pathways. In vitro studies on epithelial, immune, and neuronal cells reveal concentration-dependent cytotoxicity, mitochondrial dysfunction, membrane disruption, and activation of pro-inflammatory cytokines. Moreover, recent findings suggest that PE MPs can induce epithelial-to-mesenchymal transition (EMT), senescence, and epigenetic dysregulation, including altered expression of miRNAs and DNA methyltransferases. These cellular changes highlight the potential role of MPs in disease development, especially in cardiovascular, metabolic, and possibly cancer-related conditions. Despite growing evidence, no standardized method currently exists for quantifying MPs in human samples, complicating comparisons across studies. Further, MPs can carry harmful additives and environmental contaminants such as bisphenols, phthalates, dioxins, and heavy metals, which enhance their toxicity. Global estimates indicate that humans ingest and inhale tens of thousands of MPs particles each year, yet long-term human research remains limited. Given these findings, it is crucial to expand research on PE MP toxicodynamics and to establish regulatory policies to reduce their release. Promoting alternative biodegradable materials and improved waste management practices will be vital in decreasing human exposure to MPs and minimizing potential health risks.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090756","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread production and poor management of plastic waste have led to the pervasive presence of microplastics (MPs) in environmental and biological systems. Among various polymers, polyethylene (PE) is the most widely produced plastic globally, primarily due to its use in single-use packaging. Its persistence in ecosystems and resistance to degradation processes result in the continuous formation of PE-derived MPs. These particles have been detected in human biological matrices, including blood, lungs, placenta, and even the brain, raising increasing concerns about their bioavailability and potential health effects. Once internalized, PE MPs can interact with cellular membranes, induce oxidative stress, inflammation, and apoptosis, and interfere with epigenetic regulatory pathways. In vitro studies on epithelial, immune, and neuronal cells reveal concentration-dependent cytotoxicity, mitochondrial dysfunction, membrane disruption, and activation of pro-inflammatory cytokines. Moreover, recent findings suggest that PE MPs can induce epithelial-to-mesenchymal transition (EMT), senescence, and epigenetic dysregulation, including altered expression of miRNAs and DNA methyltransferases. These cellular changes highlight the potential role of MPs in disease development, especially in cardiovascular, metabolic, and possibly cancer-related conditions. Despite growing evidence, no standardized method currently exists for quantifying MPs in human samples, complicating comparisons across studies. Further, MPs can carry harmful additives and environmental contaminants such as bisphenols, phthalates, dioxins, and heavy metals, which enhance their toxicity. Global estimates indicate that humans ingest and inhale tens of thousands of MPs particles each year, yet long-term human research remains limited. Given these findings, it is crucial to expand research on PE MP toxicodynamics and to establish regulatory policies to reduce their release. Promoting alternative biodegradable materials and improved waste management practices will be vital in decreasing human exposure to MPs and minimizing potential health risks.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.