Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations.
Luis Daniel Martínez-Razo, Nadia Alejandra Rivero-Segura, Ericka Karol Pamela Almeida-Aguirre, Ismael Mancilla-Herrera, Ruth Rincón-Heredia, Alejandra Martínez-Ibarra, Marco Cerbón
{"title":"Mono(2-ethylhexyl) Phthalate Disrupts Mitochondrial Function, Dynamics and Biogenesis in Human Trophoblast Cells at Human Exposure Range Concentrations.","authors":"Luis Daniel Martínez-Razo, Nadia Alejandra Rivero-Segura, Ericka Karol Pamela Almeida-Aguirre, Ismael Mancilla-Herrera, Ruth Rincón-Heredia, Alejandra Martínez-Ibarra, Marco Cerbón","doi":"10.3390/toxics13090770","DOIUrl":null,"url":null,"abstract":"<p><p>Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined the impact of MEHP (0.5-200 µM) on mitochondrial function, dynamics, and biogenesis in human HTR-8/SVneo trophoblast cells. MEHP (≥5 µM) reduced MTT conversion without compromising membrane integrity, suggesting early metabolic or redox imbalance. A dose-dependent loss of mitochondrial membrane potential was observed, with increased reactive oxygen species (ROS) generation only at 200 µM. MEHP modulated the expression of mitochondrial dynamics genes, with a more pronounced mitofusin 1 (<i>MFN1</i>) induction at low doses and increased mitochondrial DNA content, suggesting a compensatory response to mild stress. Conversely, high doses more strongly induced fission and mitochondrial 1 (<i>FIS1</i>) expression, suggesting mitochondrial fragmentation. Both concentrations induced the expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2), while sirtuin 1 (SIRT1) expression and activity declined progressively with dose. These results demonstrate that MEHP disrupts mitochondrial homeostasis in trophoblast cells at concentrations spanning the estimated human exposure range. The dose-dependent effects, from adaptive responses to overt dysfunction, may help explain the associations between MEHP exposure and placental pathology observed in epidemiological studies.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090770","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mono(2-ethylhexyl) phthalate (MEHP), a bioactive metabolite of di(2-ethylhexyl) phthalate (DEHP), has been detected in the placenta and urine of pregnant women and is linked to adverse pregnancy outcomes. However, its effects on mitochondrial homeostasis in trophoblast cells remain incompletely understood. This study examined the impact of MEHP (0.5-200 µM) on mitochondrial function, dynamics, and biogenesis in human HTR-8/SVneo trophoblast cells. MEHP (≥5 µM) reduced MTT conversion without compromising membrane integrity, suggesting early metabolic or redox imbalance. A dose-dependent loss of mitochondrial membrane potential was observed, with increased reactive oxygen species (ROS) generation only at 200 µM. MEHP modulated the expression of mitochondrial dynamics genes, with a more pronounced mitofusin 1 (MFN1) induction at low doses and increased mitochondrial DNA content, suggesting a compensatory response to mild stress. Conversely, high doses more strongly induced fission and mitochondrial 1 (FIS1) expression, suggesting mitochondrial fragmentation. Both concentrations induced the expression of the mitochondrial biogenesis regulators peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2), while sirtuin 1 (SIRT1) expression and activity declined progressively with dose. These results demonstrate that MEHP disrupts mitochondrial homeostasis in trophoblast cells at concentrations spanning the estimated human exposure range. The dose-dependent effects, from adaptive responses to overt dysfunction, may help explain the associations between MEHP exposure and placental pathology observed in epidemiological studies.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.