Exposure to Bisphenol S and Bisphenol F Alters Gene Networks Related to Protein Translation and Neuroinflammation in SH-SY5Y Human Neuroblastoma Cells.
Andrea P Guzman, Christina L Sanchez, Emma Ivantsova, Jacqueline Watkins, Sara E Sutton, Christopher L Souders, Christopher J Martyniuk
{"title":"Exposure to Bisphenol S and Bisphenol F Alters Gene Networks Related to Protein Translation and Neuroinflammation in SH-SY5Y Human Neuroblastoma Cells.","authors":"Andrea P Guzman, Christina L Sanchez, Emma Ivantsova, Jacqueline Watkins, Sara E Sutton, Christopher L Souders, Christopher J Martyniuk","doi":"10.3390/toxics13090772","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) replacement chemicals are used in products like food packaging, plastic piping, and sportswear. While they can be toxic, their neurotoxicity is less understood. The aim of this study was to treat differentiated human SH-SY5Y cells with Bisphenol S (BPS) and Bisphenol F (BPF) to investigate mechanisms of toxicity. BPS reduced cell viability (>50 µM at 48 h) more than BPF (>200 µM at 48 h), with concentration- and time-dependent effects. Both induced caspase 3/7 activity at 250 µM after 48 h, though no changes were observed in levels of reactive oxygen species nor mitochondrial ATPase activity. RNA-seq analysis at 0.1 nM revealed distinct transcriptional networks: BPS altered IL15R, causing NF-kB/NFATC activation, and triggered NF-kB signaling through CD8, while BPF affected TLR9 and activated NF-kB targets through TNF. Pathway analysis showed that genes involved in neuroinflammation, protein folding, microglial function, and motor neuron regulation were disrupted, demonstrating that BPS and BPF, even at low, environmentally relevant concentrations, significantly alter gene expression in pathways linked to neuroinflammation, immune signaling, and neurodegenerative diseases. BPS primarily affected ribosomal and immune-related networks, while BPF disrupted oxidative phosphorylation and protein-folding pathways. These alterations suggest mechanisms for long-term neurological effects, highlighting the need for comprehensive evaluations of BPA alternatives.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090772","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A (BPA) replacement chemicals are used in products like food packaging, plastic piping, and sportswear. While they can be toxic, their neurotoxicity is less understood. The aim of this study was to treat differentiated human SH-SY5Y cells with Bisphenol S (BPS) and Bisphenol F (BPF) to investigate mechanisms of toxicity. BPS reduced cell viability (>50 µM at 48 h) more than BPF (>200 µM at 48 h), with concentration- and time-dependent effects. Both induced caspase 3/7 activity at 250 µM after 48 h, though no changes were observed in levels of reactive oxygen species nor mitochondrial ATPase activity. RNA-seq analysis at 0.1 nM revealed distinct transcriptional networks: BPS altered IL15R, causing NF-kB/NFATC activation, and triggered NF-kB signaling through CD8, while BPF affected TLR9 and activated NF-kB targets through TNF. Pathway analysis showed that genes involved in neuroinflammation, protein folding, microglial function, and motor neuron regulation were disrupted, demonstrating that BPS and BPF, even at low, environmentally relevant concentrations, significantly alter gene expression in pathways linked to neuroinflammation, immune signaling, and neurodegenerative diseases. BPS primarily affected ribosomal and immune-related networks, while BPF disrupted oxidative phosphorylation and protein-folding pathways. These alterations suggest mechanisms for long-term neurological effects, highlighting the need for comprehensive evaluations of BPA alternatives.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.