{"title":"Effects of Long-Term Heavy Metal Pollution on Microbial Community Structure in Soil.","authors":"Qiannuo Mi, Yan Wu, Huaisen Cai, Zuben Xu, Yue Zhao, Ronghao Guan, Xin Fan, Jianhua Guo","doi":"10.3390/toxics13090806","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal (HM) contamination of soil is a worldwide problem with adverse consequences for the environment and human health. Microorganisms, as the most active fraction in soil, play a pivotal role in assessing changes in soil quality and maintaining ecological equilibrium. Accordingly, screening efficient microorganisms for remediating contaminated soils has emerged as a key research focus. This study employed high-throughput sequencing and conducted in situ field surveys to investigate the impacts of long-term HM pollution with varying severity on soil physicochemical properties, as well as the community structure and diversity of bacteria and fungi. The results showed that the major soil physiochemical properties and the bacterial and fungal β diversity significantly changed with the increase in HM pollution levels. The relative abundances of <i>Chloroflexi</i>, <i>Myxococcota</i> and <i>Nitrospirota</i> among bacteria, along with <i>Chytridiomycota</i> and <i>Talaromyces</i> among fungi, increased significantly with rising HM pollution levels. In low-, medium- and highly contaminated soils, the dominant bacterial species were OTU10618 (<i>Micrococcales</i>), OTU6447 (<i>Chthoniobacterales</i>), and OTU7447 (<i>Burkholderiales</i>), while the dominant fungal species were OTU3669 (<i>Glomerellales</i>), OTU397 (<i>Olpidiales</i>), and OTU2568 (<i>Mortierellales</i>). Bacterial communities were mainly affected by soil-available phosphorus, available cadmium (Cd) and available Pb, while fungal communities were predominantly influenced by soil-available phosphorus, soil organic carbon and total Pb content. These findings demonstrate that soil microorganisms in chronically HM-contaminated soils exhibit adaptive shifts, and this study thereby provides critical implications for assessing the remediation potential of diverse microbial taxa in HM-polluted soils.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090806","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal (HM) contamination of soil is a worldwide problem with adverse consequences for the environment and human health. Microorganisms, as the most active fraction in soil, play a pivotal role in assessing changes in soil quality and maintaining ecological equilibrium. Accordingly, screening efficient microorganisms for remediating contaminated soils has emerged as a key research focus. This study employed high-throughput sequencing and conducted in situ field surveys to investigate the impacts of long-term HM pollution with varying severity on soil physicochemical properties, as well as the community structure and diversity of bacteria and fungi. The results showed that the major soil physiochemical properties and the bacterial and fungal β diversity significantly changed with the increase in HM pollution levels. The relative abundances of Chloroflexi, Myxococcota and Nitrospirota among bacteria, along with Chytridiomycota and Talaromyces among fungi, increased significantly with rising HM pollution levels. In low-, medium- and highly contaminated soils, the dominant bacterial species were OTU10618 (Micrococcales), OTU6447 (Chthoniobacterales), and OTU7447 (Burkholderiales), while the dominant fungal species were OTU3669 (Glomerellales), OTU397 (Olpidiales), and OTU2568 (Mortierellales). Bacterial communities were mainly affected by soil-available phosphorus, available cadmium (Cd) and available Pb, while fungal communities were predominantly influenced by soil-available phosphorus, soil organic carbon and total Pb content. These findings demonstrate that soil microorganisms in chronically HM-contaminated soils exhibit adaptive shifts, and this study thereby provides critical implications for assessing the remediation potential of diverse microbial taxa in HM-polluted soils.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.