Chronic Occupational Exposure to Chemical Mixtures Induces Genomic Instability in Paint Workers.

IF 4.1 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2025-09-17 DOI:10.3390/toxics13090785
Servet Birgin İritaş, Merve Güdül Bacanlı, Gökçe Taner, Vugar Ali Türksoy, Lütfiye Tutkun, Ömer Hınç Yilmaz, Ayşe Nurşen Başaran
{"title":"Chronic Occupational Exposure to Chemical Mixtures Induces Genomic Instability in Paint Workers.","authors":"Servet Birgin İritaş, Merve Güdül Bacanlı, Gökçe Taner, Vugar Ali Türksoy, Lütfiye Tutkun, Ömer Hınç Yilmaz, Ayşe Nurşen Başaran","doi":"10.3390/toxics13090785","DOIUrl":null,"url":null,"abstract":"<p><p>This study's objective was to evaluate genotoxic effects on automotive paint workers who are exposed to a complex mixture of VOCs, heavy metals, and solvents. Biological samples, including blood, urine, and buccal epithelial cells, were collected from 80 exposed workers and 80 demographically matched control subjects. DNA damage was assessed using the alkaline COMET assay in lymphocytes and whole blood. The Buccal Micronucleus Cytome (BMCyt) assay was also employed to identify cytogenetic abnormalities. Additionally, trichloroacetic acid (TCA), hippuric acid (HA), phenol, and lead (Pb) levels were measured as biomarkers of exposure. A significant increase in DNA damage was observed in the lymphocytes and whole blood of exposed workers (<i>p</i> < 0.05) BMCyt analysis also revealed higher frequencies of micronuclei (MN), binucleated cells, condensed chromatin (CC), and karyorrhectic (KHC) and pyknotic cells (PYC) in buccal cells (<i>p</i> < 0.05). Elevated levels of urinary HA, phenol, TCA, and blood lead indicated systemic chemical exposure. DNA damage positively correlated with these biomarkers, supporting a strong link between chronic occupational exposure and genotoxicity. The findings from this study highlight the critical importance of implementing effective safety measures and consistent biomonitoring for paint workers to prevent adverse health effects.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090785","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study's objective was to evaluate genotoxic effects on automotive paint workers who are exposed to a complex mixture of VOCs, heavy metals, and solvents. Biological samples, including blood, urine, and buccal epithelial cells, were collected from 80 exposed workers and 80 demographically matched control subjects. DNA damage was assessed using the alkaline COMET assay in lymphocytes and whole blood. The Buccal Micronucleus Cytome (BMCyt) assay was also employed to identify cytogenetic abnormalities. Additionally, trichloroacetic acid (TCA), hippuric acid (HA), phenol, and lead (Pb) levels were measured as biomarkers of exposure. A significant increase in DNA damage was observed in the lymphocytes and whole blood of exposed workers (p < 0.05) BMCyt analysis also revealed higher frequencies of micronuclei (MN), binucleated cells, condensed chromatin (CC), and karyorrhectic (KHC) and pyknotic cells (PYC) in buccal cells (p < 0.05). Elevated levels of urinary HA, phenol, TCA, and blood lead indicated systemic chemical exposure. DNA damage positively correlated with these biomarkers, supporting a strong link between chronic occupational exposure and genotoxicity. The findings from this study highlight the critical importance of implementing effective safety measures and consistent biomonitoring for paint workers to prevent adverse health effects.

Abstract Image

长期职业性接触化学混合物会导致油漆工人基因组不稳定。
本研究的目的是评估暴露于挥发性有机化合物、重金属和溶剂的复杂混合物中的汽车油漆工人的遗传毒性影响。生物样本包括血液、尿液和口腔上皮细胞,从80名暴露工人和80名人口统计学匹配的对照组中收集。在淋巴细胞和全血中使用碱性彗星法评估DNA损伤。颊微核细胞组(BMCyt)测定也被用于鉴定细胞遗传学异常。此外,三氯乙酸(TCA)、马尿酸(HA)、苯酚和铅(Pb)水平作为暴露的生物标志物进行了测量。暴露工人淋巴细胞和全血DNA损伤显著增加(p < 0.05), BMCyt分析显示颊细胞中微核细胞(MN)、双核细胞、浓缩染色质(CC)和核收缩细胞(KHC)和收缩细胞(PYC)的频率较高(p < 0.05)。尿透明质酸、酚、三羧酸和血铅水平升高表明全身化学物质暴露。DNA损伤与这些生物标志物正相关,支持慢性职业暴露与遗传毒性之间的密切联系。这项研究的结果强调了实施有效的安全措施和对油漆工人进行持续的生物监测以防止不良健康影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信