RAPSO: An Integrated PSO with Reinforcement Learning and an Adaptive Weight Strategy for the High-Precision Milling of Elastic Materials.

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-22 DOI:10.3390/s25185913
Qingxin Li, Peng Zeng, Qiankun Wu, Zijing Zhang
{"title":"RAPSO: An Integrated PSO with Reinforcement Learning and an Adaptive Weight Strategy for the High-Precision Milling of Elastic Materials.","authors":"Qingxin Li, Peng Zeng, Qiankun Wu, Zijing Zhang","doi":"10.3390/s25185913","DOIUrl":null,"url":null,"abstract":"<p><p>This study tackles the challenge of achieving high-precision robotic machining of elastic materials, where elastic recovery and overcutting often impair accuracy. To address this, a novel milling strategy, RAPSO, is introduced by combining an adaptive particle swarm optimization (APSO) algorithm with a reinforcement learning (RL)-based compensation mechanism. The method builds a material-specific milling model through residual error characterization, incorporates a dynamic inertia weight adjustment strategy into APSO for optimized toolpath generation, and integrates a Proximal Policy Optimization (PPO)-based RL module to refine trajectories iteratively. Experiments show that RAPSO reduces residual material by 33.51% compared with standard PSO and APSO methods, while offering faster convergence and greater stability. The proposed framework provides a practical solution for precision machining of elastic materials, offering improved accuracy, reduced post-processing requirements, and higher efficiency, while also contributing to the theoretical modeling of elastic recovery and advanced toolpath planning.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185913","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study tackles the challenge of achieving high-precision robotic machining of elastic materials, where elastic recovery and overcutting often impair accuracy. To address this, a novel milling strategy, RAPSO, is introduced by combining an adaptive particle swarm optimization (APSO) algorithm with a reinforcement learning (RL)-based compensation mechanism. The method builds a material-specific milling model through residual error characterization, incorporates a dynamic inertia weight adjustment strategy into APSO for optimized toolpath generation, and integrates a Proximal Policy Optimization (PPO)-based RL module to refine trajectories iteratively. Experiments show that RAPSO reduces residual material by 33.51% compared with standard PSO and APSO methods, while offering faster convergence and greater stability. The proposed framework provides a practical solution for precision machining of elastic materials, offering improved accuracy, reduced post-processing requirements, and higher efficiency, while also contributing to the theoretical modeling of elastic recovery and advanced toolpath planning.

基于强化学习和自适应权值策略的弹性材料高精度铣削集成粒子群算法。
本研究解决了实现弹性材料高精度机器人加工的挑战,其中弹性恢复和过切经常损害精度。为了解决这个问题,引入了一种新的铣削策略RAPSO,该策略将自适应粒子群优化(APSO)算法与基于强化学习(RL)的补偿机制相结合。该方法通过残差表征建立了特定材料的铣削模型,将动态惯性权重调整策略集成到APSO中以优化刀具轨迹生成,并集成基于近端策略优化(PPO)的RL模块以迭代地优化轨迹。实验表明,与标准PSO和APSO方法相比,RAPSO方法减少了33.51%的残余材料,同时具有更快的收敛速度和更高的稳定性。该框架为弹性材料的精密加工提供了一种实用的解决方案,提高了精度,减少了后处理要求,提高了效率,同时也有助于弹性恢复的理论建模和先进的刀具轨迹规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信