{"title":"TFP-YOLO: Obstacle and Traffic Sign Detection for Assisting Visually Impaired Pedestrians.","authors":"Zhiwei Zheng, Jin Cheng, Fanghua Jin","doi":"10.3390/s25185879","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing demand for intelligent mobility assistance among the visually impaired, machine guide dogs based on computer vision have emerged as an effective alternative to traditional guide dogs, owing to their flexible deployment and scalability. To enhance their visual perception capabilities in complex urban environments, this paper proposes an improved YOLOv8-based detection algorithm, termed TFP-YOLO, designed to recognize traffic signs such as traffic lights and crosswalks, as well as small obstacle objects including pedestrians and bicycles, thereby improving the target detection performance of machine guide dogs in complex road scenarios. The proposed algorithm incorporates a Triplet Attention mechanism into the backbone network to strengthen the perception of key regions, and integrates a Triple Feature Encoding (TFE) module to achieve collaborative extraction of both local and global features. Additionally, a P2 detection head is introduced to improve the accuracy of small object detection, particularly for traffic lights. Furthermore, the WIoU loss function is adopted to enhance training stability and the model's generalization capability. Experimental results demonstrate that the proposed algorithm achieves a detection accuracy of 93.9% and a precision of 90.2%, while reducing the number of parameters by 17.2%. These improvements significantly enhance the perception performance of machine guide dogs in identifying traffic information and obstacles, providing strong technical support for subsequent path planning and embedded deployment, and demonstrating considerable practical application value.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185879","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing demand for intelligent mobility assistance among the visually impaired, machine guide dogs based on computer vision have emerged as an effective alternative to traditional guide dogs, owing to their flexible deployment and scalability. To enhance their visual perception capabilities in complex urban environments, this paper proposes an improved YOLOv8-based detection algorithm, termed TFP-YOLO, designed to recognize traffic signs such as traffic lights and crosswalks, as well as small obstacle objects including pedestrians and bicycles, thereby improving the target detection performance of machine guide dogs in complex road scenarios. The proposed algorithm incorporates a Triplet Attention mechanism into the backbone network to strengthen the perception of key regions, and integrates a Triple Feature Encoding (TFE) module to achieve collaborative extraction of both local and global features. Additionally, a P2 detection head is introduced to improve the accuracy of small object detection, particularly for traffic lights. Furthermore, the WIoU loss function is adopted to enhance training stability and the model's generalization capability. Experimental results demonstrate that the proposed algorithm achieves a detection accuracy of 93.9% and a precision of 90.2%, while reducing the number of parameters by 17.2%. These improvements significantly enhance the perception performance of machine guide dogs in identifying traffic information and obstacles, providing strong technical support for subsequent path planning and embedded deployment, and demonstrating considerable practical application value.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.