Hana Charvátová, Aleš Procházka, Martin Zálešák, Vladimír Mařík
{"title":"Numerical Assessment of Electric Underfloor Heating Enhanced by Photovoltaic Integration.","authors":"Hana Charvátová, Aleš Procházka, Martin Zálešák, Vladimír Mařík","doi":"10.3390/s25185916","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations were employed to evaluate underfloor heating performance using three electricity sources: standard electric supply, solar-generated energy, and a combined configuration. Solar irradiance sensors were utilized to collect input solar radiation data, which served as a critical parameter for numerical modeling and simulations. The set outdoor air temperature used in the analysis represents an average value calculated from data measured by environmental sensors at the location of the building during the monitored period. Key metrics included indoor air temperature, time to thermal stability, and heat loss relative to outdoor conditions. The combined electric and solar-powered system demonstrated thermal efficiency, improving indoor air temperature by up to 63.6% compared to an unheated room and achieving thermal stability within 22 h. Solar-only configuration showed moderate improvements. Heat loss analysis revealed a strong correlation with indoor-outdoor temperature differentials. Hybrid underfloor heating systems integrating PV panels significantly enhance indoor thermal comfort and energy efficiency. These findings support the adoption of renewable energy technologies in residential heating, contributing to sustainable energy transitions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185916","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations were employed to evaluate underfloor heating performance using three electricity sources: standard electric supply, solar-generated energy, and a combined configuration. Solar irradiance sensors were utilized to collect input solar radiation data, which served as a critical parameter for numerical modeling and simulations. The set outdoor air temperature used in the analysis represents an average value calculated from data measured by environmental sensors at the location of the building during the monitored period. Key metrics included indoor air temperature, time to thermal stability, and heat loss relative to outdoor conditions. The combined electric and solar-powered system demonstrated thermal efficiency, improving indoor air temperature by up to 63.6% compared to an unheated room and achieving thermal stability within 22 h. Solar-only configuration showed moderate improvements. Heat loss analysis revealed a strong correlation with indoor-outdoor temperature differentials. Hybrid underfloor heating systems integrating PV panels significantly enhance indoor thermal comfort and energy efficiency. These findings support the adoption of renewable energy technologies in residential heating, contributing to sustainable energy transitions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.