Zeev Fradkin, Maxim Piscklich, Moshe Zohar, Mark Auslender
{"title":"Numerical Study of Incidence Angle-Tuned, Guided-Mode Resonant, Metasurfaces-Based Sensors for Glucose and Blood-Related Analytes Detection.","authors":"Zeev Fradkin, Maxim Piscklich, Moshe Zohar, Mark Auslender","doi":"10.3390/s25185852","DOIUrl":null,"url":null,"abstract":"<p><p>In optical one-dimensional grating-on-layer planar structures, an optical resonance occurs when the incident light wave becomes phase-matched to a leaky waveguide mode excited in the layer underneath the grating by an appropriate tuning of the grating periodicity. Changing the refractive indices of the grating's constituents, and/or thickness, changes the resonance frequency. In the case of a two-dimensional grating atop such a smooth layer, a similar and also cavity-mode resonance can occur. This idea has straightforward usage in diverse optical sensor applications. In this study, a novel guided-mode resonance sensor design for detecting glucose and hemoglobin in minute concentrations at a wide range of incidence angles is presented. In this design, materials of the grating, such as a polymer and cesium-lead halide with a perovskite crystal structure, are examined, which will allow flexible, low-cost fabrication by soft-lithography/imprint-lithography methods. The sensitivity, figure of merit, and quality factor are reported for one- and two-dimensional grating structures. The simulations performed are based on rigorous coupled-wave analysis. Optical resonance quality factor of ∼5·105 is achieved at oblique incidence for a structure comprising a one-dimensional grating etched in a poly-vinylidene chloride layer atop a silicon nitride waveguide layer on a substrate. Record values of the above-noted characteristics are achieved with a synergetic interplay of the materials, structural dimensions, incidence angle, polarization, and grating geometry.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185852","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In optical one-dimensional grating-on-layer planar structures, an optical resonance occurs when the incident light wave becomes phase-matched to a leaky waveguide mode excited in the layer underneath the grating by an appropriate tuning of the grating periodicity. Changing the refractive indices of the grating's constituents, and/or thickness, changes the resonance frequency. In the case of a two-dimensional grating atop such a smooth layer, a similar and also cavity-mode resonance can occur. This idea has straightforward usage in diverse optical sensor applications. In this study, a novel guided-mode resonance sensor design for detecting glucose and hemoglobin in minute concentrations at a wide range of incidence angles is presented. In this design, materials of the grating, such as a polymer and cesium-lead halide with a perovskite crystal structure, are examined, which will allow flexible, low-cost fabrication by soft-lithography/imprint-lithography methods. The sensitivity, figure of merit, and quality factor are reported for one- and two-dimensional grating structures. The simulations performed are based on rigorous coupled-wave analysis. Optical resonance quality factor of ∼5·105 is achieved at oblique incidence for a structure comprising a one-dimensional grating etched in a poly-vinylidene chloride layer atop a silicon nitride waveguide layer on a substrate. Record values of the above-noted characteristics are achieved with a synergetic interplay of the materials, structural dimensions, incidence angle, polarization, and grating geometry.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.