Margherita Simoni, Leonardo Baldassarre, Carlo Cazzaniga, Laura Fazi, Mattia Gaboardi, Leandro Gemmiti, Maria Kastriotou, Matthew Krzystyniak, Anna Marsicano, Marco Martellucci, Triestino Minniti, Anna Prioriello, Roberto Senesi, Valentin Suteica, Giovanni Romanelli
{"title":"Use of CR-39 Dosimeters for the Imaging of Neutron Beam Profiles in the 100 keV-10 MeV Energy Range.","authors":"Margherita Simoni, Leonardo Baldassarre, Carlo Cazzaniga, Laura Fazi, Mattia Gaboardi, Leandro Gemmiti, Maria Kastriotou, Matthew Krzystyniak, Anna Marsicano, Marco Martellucci, Triestino Minniti, Anna Prioriello, Roberto Senesi, Valentin Suteica, Giovanni Romanelli","doi":"10.3390/s25185865","DOIUrl":null,"url":null,"abstract":"<p><p>We provide a beam shape characterization of the VESUVIO spectrometer, at the ISIS Neutron and Muon Source, employing CR-39 solid-state nuclear track detectors and combining techniques including optical and electron microscopy, as well as Monte Carlo transport simulations. In particular, we show, through comparison with irradiation with 14 MeV neutrons at the NILE Facility at ISIS, that the majority of defects on the etched surface of the dosimeters irradiated on VESUVIO were induced by neutrons with energies between 100 keV and 10 MeV. Our results were compared to previous characterizations of the VESUVIO beam shape performed in either the thermal or fast energy ranges, and we conclude that the VESUVIO beam has a constant shape from thermal-neutron energies up to 10 MeV, composed of an umbra (intensity above 90% of the maximum) with radius 1.1 cm, and surrounded by a penumbra (intensity above 1% of the maximum) that extends up to 2.5 cm.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185865","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We provide a beam shape characterization of the VESUVIO spectrometer, at the ISIS Neutron and Muon Source, employing CR-39 solid-state nuclear track detectors and combining techniques including optical and electron microscopy, as well as Monte Carlo transport simulations. In particular, we show, through comparison with irradiation with 14 MeV neutrons at the NILE Facility at ISIS, that the majority of defects on the etched surface of the dosimeters irradiated on VESUVIO were induced by neutrons with energies between 100 keV and 10 MeV. Our results were compared to previous characterizations of the VESUVIO beam shape performed in either the thermal or fast energy ranges, and we conclude that the VESUVIO beam has a constant shape from thermal-neutron energies up to 10 MeV, composed of an umbra (intensity above 90% of the maximum) with radius 1.1 cm, and surrounded by a penumbra (intensity above 1% of the maximum) that extends up to 2.5 cm.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.