{"title":"Lamb Wave-Based Damage Fusion Detection of Composite Laminate Panels Using Distance Analysis and Evidence Theory.","authors":"Li Wang, Guoqiang Liu, Xiaguang Wang, Yu Yang","doi":"10.3390/s25185930","DOIUrl":null,"url":null,"abstract":"<p><p>The Lamb wave-based damage detection method shows great potential for composite impact failure assessments. However, the traditional single signal feature-based methods only depend on partial structural state monitoring information, without considering the inconsistency of damage sensitivity and detection capability for different signal features. Therefore, this paper proposes a damage fusion detection method based on distance analysis and evidence theory for composite laminate panels. Firstly, the signal features of different dimensions are extracted from time-frequency domain perspectives. Correlational analysis and cluster analysis are applied to achieve feature reduction and retain highly sensitive signal features. Secondly, the damage detection results of highly sensitive features and the corresponding basic probability assignments (BPAs) are acquired using distance analysis. Finally, the consistent damage detection result can be acquired by applying evidence theory to the decision level to fuse detection results for highly sensitive signal features. Impact tests on ten composite laminate panels are implemented to validate the proposed fusion detection method. The results show that the proposed method can accurately identify the delamination damage with different locations and different areas. In addition, the classification accuracy is above 85%, the false alarm rate is below 25% and the missing alarm rate is below 15%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185930","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Lamb wave-based damage detection method shows great potential for composite impact failure assessments. However, the traditional single signal feature-based methods only depend on partial structural state monitoring information, without considering the inconsistency of damage sensitivity and detection capability for different signal features. Therefore, this paper proposes a damage fusion detection method based on distance analysis and evidence theory for composite laminate panels. Firstly, the signal features of different dimensions are extracted from time-frequency domain perspectives. Correlational analysis and cluster analysis are applied to achieve feature reduction and retain highly sensitive signal features. Secondly, the damage detection results of highly sensitive features and the corresponding basic probability assignments (BPAs) are acquired using distance analysis. Finally, the consistent damage detection result can be acquired by applying evidence theory to the decision level to fuse detection results for highly sensitive signal features. Impact tests on ten composite laminate panels are implemented to validate the proposed fusion detection method. The results show that the proposed method can accurately identify the delamination damage with different locations and different areas. In addition, the classification accuracy is above 85%, the false alarm rate is below 25% and the missing alarm rate is below 15%.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.