{"title":"Experimental Study of Liquid and Gas Gate Valve Internal Leakage Testing Based on Ultrasonic Signal.","authors":"Tingwei Wang, Xinjia Ma, Shiqiang Zhang, Qiang Feng, Xiaomei Xiang, Hui Xia","doi":"10.3390/s25185909","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an experimental analysis of high-pressure liquid and gas gate valve leakage under multiple operating conditions, based on the variation patterns of ultrasonic signals. Focusing on a multi-physics field analysis of gate valve internal leakage and corresponding experiments, this research illustrates the acoustic wave characteristics of gate valves across diverse working media, pressures, internal leakage defect sizes, and valve diameters. By drawing upon both fluid mechanics and acoustics theory, an analytical approach suited to high-pressure gate valve leakage issues is devised. Separate high-pressure gate valve leakage test platforms for liquid and gas environments were designed and constructed, enabling 126 groups of tests under varying conditions, which include one measurement per condition of the valve size, defect size, and pressure value. These experiments examine the quantitative correlation of internal leakage flow rates and ultrasonic signal measurements under different situations. In addition, the distinct behaviors and principles exhibited by high-pressure liquid gate valves and gas gate valves are compared. The findings provide theoretical and technical support for quantifying high-pressure gate valve leakage. The study analyzes the theoretical basis for the generation of ultrasonic signals from valve internal leakage, providing specific experimental data under various operating conditions. It explains the various observations during the experiments and their principles. The conclusions of this research have practical engineering value and provide important references for future studies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185909","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an experimental analysis of high-pressure liquid and gas gate valve leakage under multiple operating conditions, based on the variation patterns of ultrasonic signals. Focusing on a multi-physics field analysis of gate valve internal leakage and corresponding experiments, this research illustrates the acoustic wave characteristics of gate valves across diverse working media, pressures, internal leakage defect sizes, and valve diameters. By drawing upon both fluid mechanics and acoustics theory, an analytical approach suited to high-pressure gate valve leakage issues is devised. Separate high-pressure gate valve leakage test platforms for liquid and gas environments were designed and constructed, enabling 126 groups of tests under varying conditions, which include one measurement per condition of the valve size, defect size, and pressure value. These experiments examine the quantitative correlation of internal leakage flow rates and ultrasonic signal measurements under different situations. In addition, the distinct behaviors and principles exhibited by high-pressure liquid gate valves and gas gate valves are compared. The findings provide theoretical and technical support for quantifying high-pressure gate valve leakage. The study analyzes the theoretical basis for the generation of ultrasonic signals from valve internal leakage, providing specific experimental data under various operating conditions. It explains the various observations during the experiments and their principles. The conclusions of this research have practical engineering value and provide important references for future studies.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.