Demonstration of the Use of NSGA-II for Optimization of Sparse Acoustic Arrays.

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185882
Christopher E Petrin, Trevor C Wilson, Aaron S Alexander, Brian R Elbing
{"title":"Demonstration of the Use of NSGA-II for Optimization of Sparse Acoustic Arrays.","authors":"Christopher E Petrin, Trevor C Wilson, Aaron S Alexander, Brian R Elbing","doi":"10.3390/s25185882","DOIUrl":null,"url":null,"abstract":"<p><p>Passive acoustic sensing with arrays has applications in many fields, including atmospheric monitoring of low frequency sounds (i.e., infrasound). Beamforming of array signals to gain spatial information about the signal is common, but the performance is often degraded due to limited resources (e.g., number of sensors, array size). Such sparse arrays create ambiguities due to reduced resolution and spatial aliasing. While previous work has focused on either maximizing array resolution or minimizing spatial aliasing, the current study demonstrates how evolutionary algorithms can be utilized to identify array configurations that optimize for both properties. The non-dominated sorting genetic algorithm II (NSGA-II) was used with the beamwidth and maximum sidelobe level as the fitness functions to iteratively identify a group of optimized synthesized array configurations. This group is termed a Pareto-front and is optimized such that one fitness function cannot be improved without a decrease in the other. These optimized solutions were studied for a single frequency (8 Hz) and a multi-frequency (3 to 20 Hz) signal using either a 36-element or 9-element array with a 60 m aperture. The performance of the synthesized arrays was compared against established array configurations (baseline) with most of the Pareto-front solutions outperforming these baseline configurations. The largest improvements to array performance using the synthesized configurations were with fewer array elements and the multi-frequency signal.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185882","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Passive acoustic sensing with arrays has applications in many fields, including atmospheric monitoring of low frequency sounds (i.e., infrasound). Beamforming of array signals to gain spatial information about the signal is common, but the performance is often degraded due to limited resources (e.g., number of sensors, array size). Such sparse arrays create ambiguities due to reduced resolution and spatial aliasing. While previous work has focused on either maximizing array resolution or minimizing spatial aliasing, the current study demonstrates how evolutionary algorithms can be utilized to identify array configurations that optimize for both properties. The non-dominated sorting genetic algorithm II (NSGA-II) was used with the beamwidth and maximum sidelobe level as the fitness functions to iteratively identify a group of optimized synthesized array configurations. This group is termed a Pareto-front and is optimized such that one fitness function cannot be improved without a decrease in the other. These optimized solutions were studied for a single frequency (8 Hz) and a multi-frequency (3 to 20 Hz) signal using either a 36-element or 9-element array with a 60 m aperture. The performance of the synthesized arrays was compared against established array configurations (baseline) with most of the Pareto-front solutions outperforming these baseline configurations. The largest improvements to array performance using the synthesized configurations were with fewer array elements and the multi-frequency signal.

NSGA-II用于稀疏声阵列优化的演示。
阵列被动声传感在许多领域都有应用,包括低频声(即次声)的大气监测。阵列信号的波束形成以获得有关信号的空间信息是常见的,但由于资源有限(例如,传感器数量,阵列大小),性能经常下降。这种稀疏数组由于分辨率降低和空间混叠而产生歧义。虽然以前的工作集中在最大化阵列分辨率或最小化空间混叠上,但当前的研究展示了如何利用进化算法来确定优化这两种属性的阵列配置。采用非支配排序遗传算法II (NSGA-II),以波束宽度和最大旁瓣电平为适应度函数,迭代识别出一组优化的综合阵列构型。这组被称为Pareto-front,并且经过优化,使得一个适应度函数不能在不降低另一个适应度函数的情况下得到改善。在单频(8 Hz)和多频(3 ~ 20 Hz)信号下,采用36元或9元阵列,孔径为60 m,对这些优化方案进行了研究。将合成阵列的性能与已建立的阵列配置(基线)进行比较,大多数Pareto-front解决方案的性能优于这些基线配置。使用合成构型对阵列性能的最大改进是阵列元素较少和多频信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信