Enhanced Path Travel Time Prediction via Guided Fusion of Heterogeneous Sensors Using Continuous-Time Dynamics.

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185873
Ang Li, Hanqiang Qian, Yanyan Chen
{"title":"Enhanced Path Travel Time Prediction via Guided Fusion of Heterogeneous Sensors Using Continuous-Time Dynamics.","authors":"Ang Li, Hanqiang Qian, Yanyan Chen","doi":"10.3390/s25185873","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate path travel time prediction is often hindered by sparse and heterogeneous traffic data. This paper proposes FusionODE-TT, a novel model designed to address these challenges by modeling traffic as a continuous-time process. The model features a Recurrent Neural Network encoder that processes multi-source time-series data to initialize a latent state vector, which then evolves over the prediction horizon using a Neural Ordinary Differential Equation (NODE). The core innovation is a guided fusion mechanism that leverages sparse but high-fidelity Automatic Vehicle Identification (AVI) data to apply strong, event-based corrections to the model's continuous latent state, mitigating error accumulation in the prediction process. Experiments were conducted on a real-world dataset comprising AVI, GPS, and point sensor data from a major urban expressway. The experimental results demonstrate that the proposed model achieves superior accuracy, outperforming a suite of baseline models in terms of prediction accuracy and robustness. Furthermore, a comprehensive ablation study was performed to validate the efficacy of our design. The study quantitatively confirms that both the continuous-time dynamics modeled by the NODE and the guided fusion mechanism are essential components, each providing a significant and independent contribution to the model's overall performance.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185873","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate path travel time prediction is often hindered by sparse and heterogeneous traffic data. This paper proposes FusionODE-TT, a novel model designed to address these challenges by modeling traffic as a continuous-time process. The model features a Recurrent Neural Network encoder that processes multi-source time-series data to initialize a latent state vector, which then evolves over the prediction horizon using a Neural Ordinary Differential Equation (NODE). The core innovation is a guided fusion mechanism that leverages sparse but high-fidelity Automatic Vehicle Identification (AVI) data to apply strong, event-based corrections to the model's continuous latent state, mitigating error accumulation in the prediction process. Experiments were conducted on a real-world dataset comprising AVI, GPS, and point sensor data from a major urban expressway. The experimental results demonstrate that the proposed model achieves superior accuracy, outperforming a suite of baseline models in terms of prediction accuracy and robustness. Furthermore, a comprehensive ablation study was performed to validate the efficacy of our design. The study quantitatively confirms that both the continuous-time dynamics modeled by the NODE and the guided fusion mechanism are essential components, each providing a significant and independent contribution to the model's overall performance.

Abstract Image

Abstract Image

Abstract Image

基于连续时间动力学的异构传感器制导融合增强路径行程时间预测。
交通数据的稀疏和异构往往阻碍了路径走时的准确预测。本文提出了一种新颖的模型FusionODE-TT,通过将流量建模为连续时间过程来解决这些挑战。该模型具有一个循环神经网络编码器,该编码器处理多源时间序列数据以初始化潜在状态向量,然后使用神经常微分方程(NODE)在预测范围内发展。核心创新是一种引导融合机制,该机制利用稀疏但高保真的自动车辆识别(AVI)数据,对模型的连续潜在状态应用基于事件的强校正,从而减轻预测过程中的误差积累。实验是在一个真实的数据集上进行的,该数据集包括AVI、GPS和来自主要城市高速公路的点传感器数据。实验结果表明,该模型具有较好的预测精度,在预测精度和鲁棒性方面优于一组基线模型。此外,进行了全面的消融研究来验证我们设计的有效性。该研究定量地证实了由NODE建模的连续时间动力学和引导融合机制都是必不可少的组成部分,它们对模型的整体性能都有重要而独立的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信