{"title":"Enhanced Path Travel Time Prediction via Guided Fusion of Heterogeneous Sensors Using Continuous-Time Dynamics.","authors":"Ang Li, Hanqiang Qian, Yanyan Chen","doi":"10.3390/s25185873","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate path travel time prediction is often hindered by sparse and heterogeneous traffic data. This paper proposes FusionODE-TT, a novel model designed to address these challenges by modeling traffic as a continuous-time process. The model features a Recurrent Neural Network encoder that processes multi-source time-series data to initialize a latent state vector, which then evolves over the prediction horizon using a Neural Ordinary Differential Equation (NODE). The core innovation is a guided fusion mechanism that leverages sparse but high-fidelity Automatic Vehicle Identification (AVI) data to apply strong, event-based corrections to the model's continuous latent state, mitigating error accumulation in the prediction process. Experiments were conducted on a real-world dataset comprising AVI, GPS, and point sensor data from a major urban expressway. The experimental results demonstrate that the proposed model achieves superior accuracy, outperforming a suite of baseline models in terms of prediction accuracy and robustness. Furthermore, a comprehensive ablation study was performed to validate the efficacy of our design. The study quantitatively confirms that both the continuous-time dynamics modeled by the NODE and the guided fusion mechanism are essential components, each providing a significant and independent contribution to the model's overall performance.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185873","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate path travel time prediction is often hindered by sparse and heterogeneous traffic data. This paper proposes FusionODE-TT, a novel model designed to address these challenges by modeling traffic as a continuous-time process. The model features a Recurrent Neural Network encoder that processes multi-source time-series data to initialize a latent state vector, which then evolves over the prediction horizon using a Neural Ordinary Differential Equation (NODE). The core innovation is a guided fusion mechanism that leverages sparse but high-fidelity Automatic Vehicle Identification (AVI) data to apply strong, event-based corrections to the model's continuous latent state, mitigating error accumulation in the prediction process. Experiments were conducted on a real-world dataset comprising AVI, GPS, and point sensor data from a major urban expressway. The experimental results demonstrate that the proposed model achieves superior accuracy, outperforming a suite of baseline models in terms of prediction accuracy and robustness. Furthermore, a comprehensive ablation study was performed to validate the efficacy of our design. The study quantitatively confirms that both the continuous-time dynamics modeled by the NODE and the guided fusion mechanism are essential components, each providing a significant and independent contribution to the model's overall performance.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.