Aleksander Sawicki, Khalid Saeed, Wojciech Walendziuk
{"title":"Behavioral Biometrics in VR: Changing Sensor Signal Modalities.","authors":"Aleksander Sawicki, Khalid Saeed, Wojciech Walendziuk","doi":"10.3390/s25185899","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of virtual reality systems and the broader metaverse landscape has prompted growing research interest in biometric authentication methods for user verification. These solutions offer an additional layer of access control that surpasses traditional password-based approaches by leveraging unique physiological or behavioral traits. Current literature emphasizes analyzing controller position and orientation data, which presents challenges when using convolutional neural networks (CNNs) with non-continuous Euler angles. The novelty of the presented approach is that it addresses this limitation. We propose a modality transformation approach that generates acceleration and angular velocity signals from trajectory and orientation data. Specifically, our work employs algebraic techniques-including quaternion algebra-to model these dynamic signals. Both the original and transformed data were then used to train various CNN architectures, including Vanilla CNNs, attention-enhanced CNNs, and Multi-Input CNNs. The proposed modification yielded significant performance improvements across all datasets. Specifically, F1-score accuracy increased from 0.80 to 0.82 for the Comos subset, from 0.77 to 0.82 for the Quest subset, and notably from 0.83 to 0.92 for the Vive subset.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185899","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid evolution of virtual reality systems and the broader metaverse landscape has prompted growing research interest in biometric authentication methods for user verification. These solutions offer an additional layer of access control that surpasses traditional password-based approaches by leveraging unique physiological or behavioral traits. Current literature emphasizes analyzing controller position and orientation data, which presents challenges when using convolutional neural networks (CNNs) with non-continuous Euler angles. The novelty of the presented approach is that it addresses this limitation. We propose a modality transformation approach that generates acceleration and angular velocity signals from trajectory and orientation data. Specifically, our work employs algebraic techniques-including quaternion algebra-to model these dynamic signals. Both the original and transformed data were then used to train various CNN architectures, including Vanilla CNNs, attention-enhanced CNNs, and Multi-Input CNNs. The proposed modification yielded significant performance improvements across all datasets. Specifically, F1-score accuracy increased from 0.80 to 0.82 for the Comos subset, from 0.77 to 0.82 for the Quest subset, and notably from 0.83 to 0.92 for the Vive subset.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.