{"title":"Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method.","authors":"Jia Zhou, Changshi Xiao, Langxiong Gan, Bo Jiao, Haojie Pan, Haiwen Yuan","doi":"10.3390/s25185867","DOIUrl":null,"url":null,"abstract":"<p><p>Directly measuring the mooring cable load while a ship is moored at a wharf poses significant practical challenges. This paper proposes an indirect load measurement method to identify mooring cable static loads based on the Influence Coefficient Matrix (ICM) method. First, a finite element analysis of the bollard is conducted to obtain the full-field strains under each unit load. A solution procedure based on the genetic algorithm (GA) is then implemented to determine the optimal placement and orientation of strain gauges, aiming to improve load identification accuracy. An optimal load coefficient matrix is derived to establish the correlation between cable loads and bollard strains. Subsequently, following the established measured point placement scheme, strain gauges are installed on the bollard surface to capture the strains, enabling inverse identification of mooring cable loads through the measured strains and the pre-established load-strain relationship. A numerical case study validated the feasibility of this method, demonstrating high identification accuracy. Furthermore, experimental verification was conducted to assess its reliability under different conditions. Results confirmed the effectiveness of this indirect approach for mooring cable static loads measurement. The research findings provide a technical framework for real-time monitoring of mooring cable loads.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185867","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Directly measuring the mooring cable load while a ship is moored at a wharf poses significant practical challenges. This paper proposes an indirect load measurement method to identify mooring cable static loads based on the Influence Coefficient Matrix (ICM) method. First, a finite element analysis of the bollard is conducted to obtain the full-field strains under each unit load. A solution procedure based on the genetic algorithm (GA) is then implemented to determine the optimal placement and orientation of strain gauges, aiming to improve load identification accuracy. An optimal load coefficient matrix is derived to establish the correlation between cable loads and bollard strains. Subsequently, following the established measured point placement scheme, strain gauges are installed on the bollard surface to capture the strains, enabling inverse identification of mooring cable loads through the measured strains and the pre-established load-strain relationship. A numerical case study validated the feasibility of this method, demonstrating high identification accuracy. Furthermore, experimental verification was conducted to assess its reliability under different conditions. Results confirmed the effectiveness of this indirect approach for mooring cable static loads measurement. The research findings provide a technical framework for real-time monitoring of mooring cable loads.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.