Garrett Madison, Grayson Michael Griser, Gage Truelson, Cole Farris, Christopher Lee Colaw, Yildirim Hurmuzlu
{"title":"Convolutional Neural Networks for Hole Inspection in Aerospace Systems.","authors":"Garrett Madison, Grayson Michael Griser, Gage Truelson, Cole Farris, Christopher Lee Colaw, Yildirim Hurmuzlu","doi":"10.3390/s25185921","DOIUrl":null,"url":null,"abstract":"<p><p>Foreign object debris (FOd) in rivet holes, machined holes, and fastener sites poses a critical risk to aerospace manufacturing, where current inspections rely on manual visual checks with flashlights and mirrors. These methods are slow, fatiguing, and prone to error. This work introduces HANNDI, a compact handheld inspection device that integrates controlled optics, illumination, and onboard deep learning for rapid and reliable inspection directly on the factory floor. The system performs focal sweeps, aligns and fuses the images into an all-in-focus representation, and applies a dual CNN pipeline based on the YOLO architecture: one network detects and localizes holes, while the other classifies debris. All training images were collected with the prototype, ensuring consistent geometry and lighting. On a withheld test set from a proprietary ≈3700 image dataset of aerospace assets, HANNDI achieved per-class precision and recall near 95%. An end-to-end demonstration on representative aircraft parts yielded an effective task time of 13.6 s per hole. To our knowledge, this is the first handheld automated optical inspection system that combines mechanical enforcement of imaging geometry, controlled illumination, and embedded CNN inference, providing a practical path toward robust factory floor deployment.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185921","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Foreign object debris (FOd) in rivet holes, machined holes, and fastener sites poses a critical risk to aerospace manufacturing, where current inspections rely on manual visual checks with flashlights and mirrors. These methods are slow, fatiguing, and prone to error. This work introduces HANNDI, a compact handheld inspection device that integrates controlled optics, illumination, and onboard deep learning for rapid and reliable inspection directly on the factory floor. The system performs focal sweeps, aligns and fuses the images into an all-in-focus representation, and applies a dual CNN pipeline based on the YOLO architecture: one network detects and localizes holes, while the other classifies debris. All training images were collected with the prototype, ensuring consistent geometry and lighting. On a withheld test set from a proprietary ≈3700 image dataset of aerospace assets, HANNDI achieved per-class precision and recall near 95%. An end-to-end demonstration on representative aircraft parts yielded an effective task time of 13.6 s per hole. To our knowledge, this is the first handheld automated optical inspection system that combines mechanical enforcement of imaging geometry, controlled illumination, and embedded CNN inference, providing a practical path toward robust factory floor deployment.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.