{"title":"Research on the Foaming Characteristics and Rheological Properties of Warm-Mix Foamed Polymer-Modified Bitumen Based on Waste Molecular Sieves.","authors":"Qiang Ye, Gongying Ding, Meng Yuan, Bei Chen","doi":"10.3390/polym17182516","DOIUrl":null,"url":null,"abstract":"<p><p>Warm-mix foamed polyurethane modified bitumen (WPB) has been widely promoted due to its significant warm-mix effect and high viscosity. However, it still has problems such as too fast foam dissipation and unstable performance. Waste molecular sieves have an extremely fine pore structure that can absorb moisture. The porous characteristics of waste molecular sieves are used to adsorb water and let it slowly release water in bitumen. If the foam dissipation time can be prolonged and the bitumen expansion speed can be reduced, it will help to stabilize the performance of foamed bitumen. This paper conducts a study on the foaming characteristics and rheological properties of WPB based on waste molecular sieves. First, the bitumen foaming test is used to analyze the foaming characteristics of WPB with waste molecular sieves. Second, the basic properties of warm-mix foamed polymer-modified bitumen, including penetration, softening point, ductility, and viscosity, are investigated. Finally, a dynamic shear rheometer (DSR) is employed to study the high-temperature rutting resistance and high-temperature permanent deformation resistance of warm-mix foamed polymer-modified bitumen. The research results show that the amount of foaming water is the primary factor influencing bitumen foaming. The addition of waste molecular sieves has a significant impact on the intensity and duration of the bitumen foaming reaction. WPB with waste molecular sieves has a greater consistency and better high-temperature performance, but its low-temperature performance is somewhat weakened. The high-temperature deformation resistance of WPB with waste molecular sieves is superior to that of ordinary WPB and is affected by the amount of foaming water. An appropriate amount of foaming water can enable WPB with waste molecular sieves to exhibit excellent high-temperature deformation resistance.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182516","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Warm-mix foamed polyurethane modified bitumen (WPB) has been widely promoted due to its significant warm-mix effect and high viscosity. However, it still has problems such as too fast foam dissipation and unstable performance. Waste molecular sieves have an extremely fine pore structure that can absorb moisture. The porous characteristics of waste molecular sieves are used to adsorb water and let it slowly release water in bitumen. If the foam dissipation time can be prolonged and the bitumen expansion speed can be reduced, it will help to stabilize the performance of foamed bitumen. This paper conducts a study on the foaming characteristics and rheological properties of WPB based on waste molecular sieves. First, the bitumen foaming test is used to analyze the foaming characteristics of WPB with waste molecular sieves. Second, the basic properties of warm-mix foamed polymer-modified bitumen, including penetration, softening point, ductility, and viscosity, are investigated. Finally, a dynamic shear rheometer (DSR) is employed to study the high-temperature rutting resistance and high-temperature permanent deformation resistance of warm-mix foamed polymer-modified bitumen. The research results show that the amount of foaming water is the primary factor influencing bitumen foaming. The addition of waste molecular sieves has a significant impact on the intensity and duration of the bitumen foaming reaction. WPB with waste molecular sieves has a greater consistency and better high-temperature performance, but its low-temperature performance is somewhat weakened. The high-temperature deformation resistance of WPB with waste molecular sieves is superior to that of ordinary WPB and is affected by the amount of foaming water. An appropriate amount of foaming water can enable WPB with waste molecular sieves to exhibit excellent high-temperature deformation resistance.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.