Prestress Transfer in NSM CFRP-Strengthened RC Structures Under Curing and Service Temperature Effects: Experimental Validation and Analytical Modeling.
Shuang Gong, Peiqi He, Ruogu Wang, Junjin Li, Jun Liu, Miao Su
{"title":"Prestress Transfer in NSM CFRP-Strengthened RC Structures Under Curing and Service Temperature Effects: Experimental Validation and Analytical Modeling.","authors":"Shuang Gong, Peiqi He, Ruogu Wang, Junjin Li, Jun Liu, Miao Su","doi":"10.3390/polym17182492","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines the prestress transmission behavior in near-surface-mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened reinforced concrete structures, with particular emphasis on the effects of temperature. Experimental tests were conducted to evaluate the tensile and shear properties of epoxy adhesives under a range of curing temperatures (20-100 °C) and ambient service temperatures (0-80 °C). The results reveal an inverse exponential relationship between curing time and temperature. Notably, adhesive strength declines significantly above 60 °C and the adhesive loses functionality at 80 °C. Building on these findings, an analytical model was developed to predict prestress transfer length, CFRP strain distribution, and interfacial shear stress. The model incorporates effective bond stiffness and a prestress reduction coefficient to account for varying prestress levels (10-50%). Parametric analyses identify the CFRP elastic modulus, cross-sectional geometry, adhesive thickness, and degree of curing as critical factors influencing prestress transmission. The model's predictions were validated against experimental data, demonstrating its reliability. Overall, this work provides a theoretical foundation for optimizing the design of NSM CFRP-strengthened structures under complex thermal conditions.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182492","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the prestress transmission behavior in near-surface-mounted (NSM) carbon fiber-reinforced polymer (CFRP)-strengthened reinforced concrete structures, with particular emphasis on the effects of temperature. Experimental tests were conducted to evaluate the tensile and shear properties of epoxy adhesives under a range of curing temperatures (20-100 °C) and ambient service temperatures (0-80 °C). The results reveal an inverse exponential relationship between curing time and temperature. Notably, adhesive strength declines significantly above 60 °C and the adhesive loses functionality at 80 °C. Building on these findings, an analytical model was developed to predict prestress transfer length, CFRP strain distribution, and interfacial shear stress. The model incorporates effective bond stiffness and a prestress reduction coefficient to account for varying prestress levels (10-50%). Parametric analyses identify the CFRP elastic modulus, cross-sectional geometry, adhesive thickness, and degree of curing as critical factors influencing prestress transmission. The model's predictions were validated against experimental data, demonstrating its reliability. Overall, this work provides a theoretical foundation for optimizing the design of NSM CFRP-strengthened structures under complex thermal conditions.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.