Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-22 DOI:10.3390/polym17182558
Qiming Huo, Zhuo Lv, Shengyu Feng, Dengxu Wang, Hongzhi Liu
{"title":"Tuning White-Light Emission of POSS-Based Fluorescent Hybrid Porous Polymers via Physical Blending for White LEDs.","authors":"Qiming Huo, Zhuo Lv, Shengyu Feng, Dengxu Wang, Hongzhi Liu","doi":"10.3390/polym17182558","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a straightforward strategy for preparing organic fluorescent materials, fine-tuning white-light emission, and subsequently constructing white light-emitting diodes (LEDs) is of great significance. Herein, we report on the modulation of white-light emission and the fabrication of white LEDs using polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers (HPPs) through simple physical blending. Two HPPs, namely HPP-1 and HPP-2, which emit blue and red light, respectively, were synthesized via the efficient Heck reactions of octavinylsilsesquioxane with 4,4'-dibromobiphenyl and 1,3,6,8-tetrabromopyrene. By physically doping of HPP-1 and HPP-2 in variable ratios in solvent suspensions, it was discovered that white-light emission is significantly influenced by the concentrations of the materials and the excitation wavelength. Similar findings were also observed in the solid-state physical doping. An ideal white light emission with a CIE coordinate of (0.33, 0.33) can be achieved when excited at 380 nm with a mass ratio of HPP-1 to HPP-2 of 1:2. Finally, the two HPPs were dispersed in polysiloxane matrices, and a white LED with a CIE coordinate of (0.42, 0.36) was obtained. The LED exhibited a color rendering index of up to 90 and a correlated color temperature of 2858 K, realizing warm white light emission. This simple and convenient white-light regulation strategy holds great promise for application in the development of novel white LEDs based on organic fluorescent porous materials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a straightforward strategy for preparing organic fluorescent materials, fine-tuning white-light emission, and subsequently constructing white light-emitting diodes (LEDs) is of great significance. Herein, we report on the modulation of white-light emission and the fabrication of white LEDs using polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers (HPPs) through simple physical blending. Two HPPs, namely HPP-1 and HPP-2, which emit blue and red light, respectively, were synthesized via the efficient Heck reactions of octavinylsilsesquioxane with 4,4'-dibromobiphenyl and 1,3,6,8-tetrabromopyrene. By physically doping of HPP-1 and HPP-2 in variable ratios in solvent suspensions, it was discovered that white-light emission is significantly influenced by the concentrations of the materials and the excitation wavelength. Similar findings were also observed in the solid-state physical doping. An ideal white light emission with a CIE coordinate of (0.33, 0.33) can be achieved when excited at 380 nm with a mass ratio of HPP-1 to HPP-2 of 1:2. Finally, the two HPPs were dispersed in polysiloxane matrices, and a white LED with a CIE coordinate of (0.42, 0.36) was obtained. The LED exhibited a color rendering index of up to 90 and a correlated color temperature of 2858 K, realizing warm white light emission. This simple and convenient white-light regulation strategy holds great promise for application in the development of novel white LEDs based on organic fluorescent porous materials.

基于poss的荧光杂化多孔聚合物在白光led中的物理共混调谐白光发射。
开发一种简单的策略来制备有机荧光材料,微调白光发射,并随后构建白光发光二极管(led)具有重要意义。本文报道了利用多面体低聚硅氧烷(POSS)基荧光杂化多孔聚合物(HPPs)通过简单的物理共混,调制白光发射和制造白光led。通过辛烷基硅氧烷与4,4′-二溴联苯和1,3,6,8-四溴芘的Heck反应,合成了两个分别发出蓝光和红光的HPP-1和HPP-2。通过在溶剂悬浮液中以不同比例物理掺杂HPP-1和HPP-2,发现白光发射受到材料浓度和激发波长的显著影响。在固态物理掺杂中也观察到类似的结果。当HPP-1和HPP-2的质量比为1:2时,在380 nm处激发可获得CIE坐标为(0.33,0.33)的理想白光发射。最后,将两个hpp分散在聚硅氧烷基质中,得到CIE坐标为(0.42,0.36)的白光LED。该LED显色指数高达90,相关色温为2858 K,可实现暖白光发射。这种简单方便的白光调节策略在基于有机荧光多孔材料的新型白光led的开发中具有很大的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信