Compound Jamming Recognition Under Low JNR Setting Based on a Dual-Branch Residual Fusion Network.

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185881
Wen Lu, Junbao Li, Feng Xie, Huanyu Liu
{"title":"Compound Jamming Recognition Under Low JNR Setting Based on a Dual-Branch Residual Fusion Network.","authors":"Wen Lu, Junbao Li, Feng Xie, Huanyu Liu","doi":"10.3390/s25185881","DOIUrl":null,"url":null,"abstract":"<p><p>In complex electromagnetic environments, radar systems face increasing challenges from advanced jamming techniques. These challenges mainly stem from the diversity of jamming patterns, the complexity of compound jamming signals, and the difficulty of recognition under low jamming-to-noise ratio conditions. Accurate recognition of such signals is critical for enhancing radar anti-jamming capabilities. However, traditional methods often struggle with diverse and evolving jamming patterns. To address this issue, we propose a novel deep learning-based approach for accurate and robust recognition of complex radar jamming signals. Specifically, the proposed network adopts a dual-branch architecture that concurrently processes time-domain and time-frequency-domain features of jamming signals. It further incorporates a multi-branch convolutional structure to strengthen feature extraction and applies an effective feature fusion strategy to capture subtle patterns. Simulation results demonstrate that the proposed method outperforms six representative baseline approaches in recognition accuracy and noise robustness, particularly under low jamming-to-noise ratio conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185881","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In complex electromagnetic environments, radar systems face increasing challenges from advanced jamming techniques. These challenges mainly stem from the diversity of jamming patterns, the complexity of compound jamming signals, and the difficulty of recognition under low jamming-to-noise ratio conditions. Accurate recognition of such signals is critical for enhancing radar anti-jamming capabilities. However, traditional methods often struggle with diverse and evolving jamming patterns. To address this issue, we propose a novel deep learning-based approach for accurate and robust recognition of complex radar jamming signals. Specifically, the proposed network adopts a dual-branch architecture that concurrently processes time-domain and time-frequency-domain features of jamming signals. It further incorporates a multi-branch convolutional structure to strengthen feature extraction and applies an effective feature fusion strategy to capture subtle patterns. Simulation results demonstrate that the proposed method outperforms six representative baseline approaches in recognition accuracy and noise robustness, particularly under low jamming-to-noise ratio conditions.

基于双支路残差融合网络的低JNR设置下复合干扰识别。
在复杂的电磁环境中,雷达系统面临着越来越多的来自先进干扰技术的挑战。这些挑战主要来自干扰模式的多样性、复合干扰信号的复杂性以及在低信噪比条件下的识别难度。准确识别此类信号对于增强雷达抗干扰能力至关重要。然而,传统的方法经常与各种不断发展的干扰模式作斗争。为了解决这个问题,我们提出了一种新的基于深度学习的方法来准确和鲁棒地识别复杂的雷达干扰信号。具体而言,该网络采用双分支架构,同时处理干扰信号的时域和时频域特征。它进一步结合多分支卷积结构来加强特征提取,并采用有效的特征融合策略来捕获细微模式。仿真结果表明,该方法在识别精度和噪声鲁棒性方面优于六种代表性基线方法,特别是在低干扰比条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信