pH-Sensitive Naproxen Delivery via ZIF and Kaolin@ZIF Nanocarriers in 3D-Printed PLA-Gelatin Hydrogels.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-16 DOI:10.3390/polym17182497
Reyhan Çetin, Berna Ates, Ozgul Gok, Birgül Benli
{"title":"pH-Sensitive Naproxen Delivery via ZIF and Kaolin@ZIF Nanocarriers in 3D-Printed PLA-Gelatin Hydrogels.","authors":"Reyhan Çetin, Berna Ates, Ozgul Gok, Birgül Benli","doi":"10.3390/polym17182497","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to simulate localized drug release. Kaolin (Kao), a basic mineral in the kaolin group that includes halloysite, was selected as a chemically stable and biocompatible adsorbent to enhance ZIF integrity and system reliability. To address the concerns about the safety and reproducibility of nanoscale materials in biomedical applications, structurally stable ZIF and Kao@ZIF nanocarriers were synthesized and characterized using FT-IR, SEM-EDS, and LC-M/MS, measuring drug loading efficiencies over 90% for ZIF and slightly higher for Kao@ZIF. In vitro release profiles showed strong pH sensitivity, with greater naproxen release at acidic pH (5.4) and more sustained release from Kao@ZIF. Cytotoxicity assays using L929 fibroblasts demonstrated improved biocompatibility, with cell viabilities of approximately 75% for ZIF-naproxen, 82% for Kao@ZIF-naproxen, and 90% for gelatin-coated PLA-Kao@ZIF scaffolds, for 24 h incubation. Incorporating kaolin-stabilized ZIF nanocarriers into 3D-printed biodegradable scaffolds offers a promising and safer approach for pH-sensitive, tissue-targeted drug delivery, while laying the groundwork for future studies involving halloysite-derived nanotubular systems.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182497","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to simulate localized drug release. Kaolin (Kao), a basic mineral in the kaolin group that includes halloysite, was selected as a chemically stable and biocompatible adsorbent to enhance ZIF integrity and system reliability. To address the concerns about the safety and reproducibility of nanoscale materials in biomedical applications, structurally stable ZIF and Kao@ZIF nanocarriers were synthesized and characterized using FT-IR, SEM-EDS, and LC-M/MS, measuring drug loading efficiencies over 90% for ZIF and slightly higher for Kao@ZIF. In vitro release profiles showed strong pH sensitivity, with greater naproxen release at acidic pH (5.4) and more sustained release from Kao@ZIF. Cytotoxicity assays using L929 fibroblasts demonstrated improved biocompatibility, with cell viabilities of approximately 75% for ZIF-naproxen, 82% for Kao@ZIF-naproxen, and 90% for gelatin-coated PLA-Kao@ZIF scaffolds, for 24 h incubation. Incorporating kaolin-stabilized ZIF nanocarriers into 3D-printed biodegradable scaffolds offers a promising and safer approach for pH-sensitive, tissue-targeted drug delivery, while laying the groundwork for future studies involving halloysite-derived nanotubular systems.

通过ZIF和Kaolin@ZIF纳米载体在3d打印pla -明胶水凝胶中的ph敏感萘普生递送。
本研究提出了一种ph响应药物递送平台,该平台基于装载萘普生的沸石咪唑酸框架(ZIF)和高岭土-ZIF (Kao@ZIF)纳米载体,嵌入涂有明胶水凝胶的3d打印聚乳酸(PLA)支架中。聚乳酸盘被设计成结构组织模型来模拟局部药物释放。高岭土(Kao)是高岭土族中的一种碱性矿物,包括高岭土,被选为化学稳定性和生物相容性好的吸附剂,以提高ZIF的完整性和系统的可靠性。为了解决纳米材料在生物医学应用中的安全性和可重复性问题,我们合成了结构稳定的ZIF和Kao@ZIF纳米载体,并使用FT-IR、SEM-EDS和LC-M/MS对其进行了表征,ZIF的载药效率超过90%,Kao@ZIF的载药效率略高。体外释放谱显示出较强的pH敏感性,在酸性pH(5.4)下,萘普生的释放量较大,在Kao@ZIF上的持续释放量较大。使用L929成纤维细胞进行的细胞毒性试验表明,在24小时的培养过程中,zif -萘普生的细胞存活率约为75%,Kao@ZIF-naproxen的细胞存活率约为82%,明胶包被PLA-Kao@ZIF支架的细胞存活率约为90%,生物相容性得到改善。将高岭土稳定的ZIF纳米载体结合到3d打印的可生物降解支架中,为ph敏感的组织靶向药物输送提供了一种有前景且更安全的方法,同时为未来涉及高岭土衍生纳米管系统的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信