A Comparison Study on Polysaccharides Extracted from Citrus reticulata Blanco cv. Tankan Peel Using Five Different Methods: Structural Characterization and Immunological Competence.
Jinming Peng, Guangwei Chen, Ziyuan Lin, Shaoxin Guo, Yue Zeng, Qin Wang, Wenhua Yang, Jun Li
{"title":"A Comparison Study on Polysaccharides Extracted from <i>Citrus reticulata</i> Blanco cv. Tankan Peel Using Five Different Methods: Structural Characterization and Immunological Competence.","authors":"Jinming Peng, Guangwei Chen, Ziyuan Lin, Shaoxin Guo, Yue Zeng, Qin Wang, Wenhua Yang, Jun Li","doi":"10.3390/polym17182554","DOIUrl":null,"url":null,"abstract":"<p><p>This is the first work to screen an optimal extraction method for <i>Citrus reticulata</i> Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named CPP-W, CPP-A, CPP-E, CPP-P, and CPP-U, respectively. Results showed that CPP-A and CPP-P had higher extraction yields than other CPPs. The five CPPs varied chemically in molecular weight, monosaccharide composition, and microstructure, but shared similar IR spectra and core glycosidic linkages, indicating differential degradation while preserving core structures during extraction. Among these CPPs, CPP-A, CPP-E, and CPP-U exhibited stronger immunological activities, attributed to high galacturonic acid and low molecular weight. Moreover, CPPs significantly promoted secretion of cytokines (nitric oxide, NO; prostaglandin E<sub>2</sub>, PGE<sub>2</sub>; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α) by activating downstream inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)-related mitogen-activated protein kinases (MAPK) pathways. Overall, CPP-E possessed high extraction yield, low molecular weight, and strong immuno-stimulatory activity, suggesting that enzyme-assisted extraction was the optimal approach for extracting CPP.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182554","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This is the first work to screen an optimal extraction method for Citrus reticulata Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named CPP-W, CPP-A, CPP-E, CPP-P, and CPP-U, respectively. Results showed that CPP-A and CPP-P had higher extraction yields than other CPPs. The five CPPs varied chemically in molecular weight, monosaccharide composition, and microstructure, but shared similar IR spectra and core glycosidic linkages, indicating differential degradation while preserving core structures during extraction. Among these CPPs, CPP-A, CPP-E, and CPP-U exhibited stronger immunological activities, attributed to high galacturonic acid and low molecular weight. Moreover, CPPs significantly promoted secretion of cytokines (nitric oxide, NO; prostaglandin E2, PGE2; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α) by activating downstream inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)-related mitogen-activated protein kinases (MAPK) pathways. Overall, CPP-E possessed high extraction yield, low molecular weight, and strong immuno-stimulatory activity, suggesting that enzyme-assisted extraction was the optimal approach for extracting CPP.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.