The Effect of Voltage Stabilizers on the Electrical Resistance Properties of EPDM Bulk for Cable Accessories.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-18 DOI:10.3390/polym17182523
Zhongyuan Li, Zhen Zhang, Chang Liu, Chenyang Ma, Xueting Wang
{"title":"The Effect of Voltage Stabilizers on the Electrical Resistance Properties of EPDM Bulk for Cable Accessories.","authors":"Zhongyuan Li, Zhen Zhang, Chang Liu, Chenyang Ma, Xueting Wang","doi":"10.3390/polym17182523","DOIUrl":null,"url":null,"abstract":"<p><p>As a critical component in high-voltage cable accessories, ethylene-propylene-diene monomer (EPDM) reinforced insulation faces severe issues of surface discharge and bulk breakdown at the insulation interface. To enhance the electrical resistance of EPDM bulk and insulation interfaces, the 4-allyloxy-2-hydroxybenzophenone was employed as a voltage stabilizer to modify EPDM. A systematic study was conducted on the influence of the voltage stabilizer on the DC breakdown strength of EPDM, the anti-migration properties of the voltage stabilizer, and its effect on the surface breakdown voltage of EPDM. Additionally, pressure and surface breakdown test setups were designed. The results indicate that the DC breakdown strength of EPDM decreases with increasing external pressure, and this decline is more pronounced in EPDM modified with the voltage stabilizer. Surface breakdown experiments demonstrate that the voltage stabilizer has a positive effect on improving the surface breakdown voltage of EPDM, with a more significant enhancement observed at the EPDM/XLPE bilayer dielectric interface. Surface potential tests reveal that the grafted voltage stabilizer introduces numerous shallow traps, inhibiting surface charge accumulation and thereby increasing the surface breakdown voltage.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As a critical component in high-voltage cable accessories, ethylene-propylene-diene monomer (EPDM) reinforced insulation faces severe issues of surface discharge and bulk breakdown at the insulation interface. To enhance the electrical resistance of EPDM bulk and insulation interfaces, the 4-allyloxy-2-hydroxybenzophenone was employed as a voltage stabilizer to modify EPDM. A systematic study was conducted on the influence of the voltage stabilizer on the DC breakdown strength of EPDM, the anti-migration properties of the voltage stabilizer, and its effect on the surface breakdown voltage of EPDM. Additionally, pressure and surface breakdown test setups were designed. The results indicate that the DC breakdown strength of EPDM decreases with increasing external pressure, and this decline is more pronounced in EPDM modified with the voltage stabilizer. Surface breakdown experiments demonstrate that the voltage stabilizer has a positive effect on improving the surface breakdown voltage of EPDM, with a more significant enhancement observed at the EPDM/XLPE bilayer dielectric interface. Surface potential tests reveal that the grafted voltage stabilizer introduces numerous shallow traps, inhibiting surface charge accumulation and thereby increasing the surface breakdown voltage.

电压稳定剂对电缆附件用三元乙丙橡胶体电阻性能的影响。
EPDM增强绝缘作为高压电缆附件中的关键部件,面临着严重的表面放电和绝缘界面大面积击穿问题。为了提高EPDM本体和绝缘界面的电阻,采用4-烯丙氧基-2-羟基二苯甲酮作为稳压器对EPDM进行改性。系统研究了稳压器对三元乙丙橡胶直流击穿强度的影响、稳压器的抗迁移性能及其对三元乙丙橡胶表面击穿电压的影响。此外,还设计了压力和表面击穿测试装置。结果表明:EPDM的直流击穿强度随外压的增加而降低,且在加入稳压器改性的EPDM中下降更为明显;表面击穿实验表明,稳压器对提高EPDM表面击穿电压有积极作用,其中EPDM/XLPE双层介质界面处的击穿电压提高更为显著。表面电位测试表明,接枝稳压器引入了许多浅阱,抑制了表面电荷积累,从而提高了表面击穿电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信