Hailong Yu, Ping Liu, Xiaohuan Ji, Xiaoze Jiang, Bin Sun
{"title":"Interphase-Resolved Performance in PA6/TiO<sub>2</sub> Nanocomposite Fibers: Four-Phase Geometry Linking Structure to Mechanical and UV Protection.","authors":"Hailong Yu, Ping Liu, Xiaohuan Ji, Xiaoze Jiang, Bin Sun","doi":"10.3390/polym17182551","DOIUrl":null,"url":null,"abstract":"<p><p>Melt-spun PA6/TiO<sub>2</sub> fibers with TiO<sub>2</sub> modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics-structure-property link. This work proposes, for the first time at fiber scale, a four-phase partition into crystal (c), crystal-adjacent rigid amorphous fraction (RAF-c), interfacial rigid amorphous fraction (RAF-i), and mobile amorphous fraction (MAF), and extracts an interfacial triad consisting of the specific interfacial area (S<sub>v</sub>), polymer-only RAF-i fraction expressed per composite volume (Γ<sub>i</sub>), and interphase thickness (t<sub>i</sub>) from SAXS invariants to establish a quantitative interphase-structure-property framework. A documented SAXS/DSC/WAXS workflow partitions the polymer into the above four components on a polymer-only basis. Upon filling, Γ<sub>i</sub> increases while RAF-c decreases, leaving the total RAF approximately conserved. Under identical cooling, DSC shows the crystallization peak temperature is higher by 1.6-4.3 °C and has longer half-times, indicating enhanced heterogeneous nucleation together with growth are increasingly limited by interphase confinement. At 4 wt% loading, KH570-modified fibers versus KH550-modified fibers exhibit higher α-phase orientation (Hermans factor f(α): 0.697 vs. 0.414) but an ~89.4% lower α/γ ratio. At the macroscale, compared to pure (neat) PA6, 4 wt% KH550- and KH570-modified fibers show tenacity enhancements of ~9.5% and ~33.3%, with elongation decreased by ~31-68%. These trends reflect orientation-driven stiffening accompanied by a reduction in the mobile amorphous fraction and stronger interphase constraints on chain mobility. Knitted fabrics achieve a UV protection factor (UPF) of at least 50, whereas pure PA6 fabrics show only ~5.0, corresponding to ≥16-fold improvement. Taken together, the SAXS-derived descriptors (S<sub>v</sub>, Γ<sub>i</sub>, t<sub>i</sub>) provide transferable interphase quantification and, together with WAXS and DSC, yield a reproducible link from interfacial geometry to kinetics, structure, and properties, revealing two limiting regimes-orientation-dominated and phase-fraction-dominated.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182551","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics-structure-property link. This work proposes, for the first time at fiber scale, a four-phase partition into crystal (c), crystal-adjacent rigid amorphous fraction (RAF-c), interfacial rigid amorphous fraction (RAF-i), and mobile amorphous fraction (MAF), and extracts an interfacial triad consisting of the specific interfacial area (Sv), polymer-only RAF-i fraction expressed per composite volume (Γi), and interphase thickness (ti) from SAXS invariants to establish a quantitative interphase-structure-property framework. A documented SAXS/DSC/WAXS workflow partitions the polymer into the above four components on a polymer-only basis. Upon filling, Γi increases while RAF-c decreases, leaving the total RAF approximately conserved. Under identical cooling, DSC shows the crystallization peak temperature is higher by 1.6-4.3 °C and has longer half-times, indicating enhanced heterogeneous nucleation together with growth are increasingly limited by interphase confinement. At 4 wt% loading, KH570-modified fibers versus KH550-modified fibers exhibit higher α-phase orientation (Hermans factor f(α): 0.697 vs. 0.414) but an ~89.4% lower α/γ ratio. At the macroscale, compared to pure (neat) PA6, 4 wt% KH550- and KH570-modified fibers show tenacity enhancements of ~9.5% and ~33.3%, with elongation decreased by ~31-68%. These trends reflect orientation-driven stiffening accompanied by a reduction in the mobile amorphous fraction and stronger interphase constraints on chain mobility. Knitted fabrics achieve a UV protection factor (UPF) of at least 50, whereas pure PA6 fabrics show only ~5.0, corresponding to ≥16-fold improvement. Taken together, the SAXS-derived descriptors (Sv, Γi, ti) provide transferable interphase quantification and, together with WAXS and DSC, yield a reproducible link from interfacial geometry to kinetics, structure, and properties, revealing two limiting regimes-orientation-dominated and phase-fraction-dominated.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.