{"title":"Comparative Performance Analysis of Lightweight Cryptographic Algorithms on Resource-Constrained IoT Platforms.","authors":"Tiberius-George Sorescu, Vlad-Mihai Chiriac, Mario-Alexandru Stoica, Ciprian-Romeo Comsa, Iustin-Gabriel Soroaga, Alexandru Contac","doi":"10.3390/s25185887","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in Internet of Things (IoT) devices has introduced significant security challenges, primarily due to their inherent constraints in computational power, memory, and energy. This study provides a comparative performance analysis of selected modern cryptographic algorithms on a resource-constrained IoT platform, the Nordic Thingy:53. We evaluated a set of ciphers including the NIST lightweight standard ASCON, eSTREAM finalists Salsa20, Rabbit, Sosemanuk, HC-256, and the extended-nonce variant XChaCha20. Using a dual test-bench methodology, we measured energy consumption and performance under two distinct scenarios: a low-data-rate Bluetooth mesh network and a high-throughput bulk data transfer. The results reveal significant performance variations among the algorithms. In high-throughput tests, ciphers like XChaCha20, Salsa20, and ASCON32 demonstrated superior speed, while HC-256 proved impractically slow for large payloads. The Bluetooth mesh experiments quantified the direct relationship between network activity and power draw, underscoring the critical impact of cryptographic choice on battery life. These findings offer an empirical basis for selecting appropriate cryptographic solutions that balance security, energy efficiency, and performance requirements for real-world IoT applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185887","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in Internet of Things (IoT) devices has introduced significant security challenges, primarily due to their inherent constraints in computational power, memory, and energy. This study provides a comparative performance analysis of selected modern cryptographic algorithms on a resource-constrained IoT platform, the Nordic Thingy:53. We evaluated a set of ciphers including the NIST lightweight standard ASCON, eSTREAM finalists Salsa20, Rabbit, Sosemanuk, HC-256, and the extended-nonce variant XChaCha20. Using a dual test-bench methodology, we measured energy consumption and performance under two distinct scenarios: a low-data-rate Bluetooth mesh network and a high-throughput bulk data transfer. The results reveal significant performance variations among the algorithms. In high-throughput tests, ciphers like XChaCha20, Salsa20, and ASCON32 demonstrated superior speed, while HC-256 proved impractically slow for large payloads. The Bluetooth mesh experiments quantified the direct relationship between network activity and power draw, underscoring the critical impact of cryptographic choice on battery life. These findings offer an empirical basis for selecting appropriate cryptographic solutions that balance security, energy efficiency, and performance requirements for real-world IoT applications.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.