Low Threshold Voltage and Programmable Patterned Polymer-Dispersed Liquid Crystal Smart Windows.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-19 DOI:10.3390/polym17182531
Zhichao Ji, Zhenyuan Wang, Hongxu Jin, Xinying Cui, Meijun Liu, Tianzhen Chen, Lei Wang, Haibin Sun, Taoufik Soltani, Xinzheng Zhang
{"title":"Low Threshold Voltage and Programmable Patterned Polymer-Dispersed Liquid Crystal Smart Windows.","authors":"Zhichao Ji, Zhenyuan Wang, Hongxu Jin, Xinying Cui, Meijun Liu, Tianzhen Chen, Lei Wang, Haibin Sun, Taoufik Soltani, Xinzheng Zhang","doi":"10.3390/polym17182531","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region addressable control. To address these challenges, we propose a pre-orientation strategy via low-voltage electric field (5 V, 1 kHz), which optimizes liquid crystal molecular alignment during the phase separation process. Vertically aligned liquid crystal molecules in the polymer network with enlarged pore structures reduce anchoring energy barriers for LC molecular reorientation, causing a 61.2% reduction in threshold voltage (<i>V</i><sub>th</sub>) from 20.6 V to 8.0 V. Crucially, a programmable patterned PDLC film is successfully fabricated by utilizing cost-effective photomasks. Due to the different <i>V</i><sub>th</sub> of the corresponding regions, the patterned PDLC film exhibits stepwise control modes of light transmission: patterned scattering state, patterned transparent state and total transparent state, driven by incremental voltages. Our method can achieve not only energy-efficient tunable patterns for esthetic designs (e.g., logos or images) but also a scalable platform for multi-level optical modulation, which will advance PDLC technology toward low-voltage adaptive smart windows and open avenues for intelligent architectures and broadening their application scenarios.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473949/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region addressable control. To address these challenges, we propose a pre-orientation strategy via low-voltage electric field (5 V, 1 kHz), which optimizes liquid crystal molecular alignment during the phase separation process. Vertically aligned liquid crystal molecules in the polymer network with enlarged pore structures reduce anchoring energy barriers for LC molecular reorientation, causing a 61.2% reduction in threshold voltage (Vth) from 20.6 V to 8.0 V. Crucially, a programmable patterned PDLC film is successfully fabricated by utilizing cost-effective photomasks. Due to the different Vth of the corresponding regions, the patterned PDLC film exhibits stepwise control modes of light transmission: patterned scattering state, patterned transparent state and total transparent state, driven by incremental voltages. Our method can achieve not only energy-efficient tunable patterns for esthetic designs (e.g., logos or images) but also a scalable platform for multi-level optical modulation, which will advance PDLC technology toward low-voltage adaptive smart windows and open avenues for intelligent architectures and broadening their application scenarios.

低阈值电压和可编程图案聚合物分散液晶智能窗口。
聚合物分散液晶(PDLC)智能窗户在节能建筑和车辆方面具有巨大的潜力,为实现碳中和提供了一条有希望的途径。然而,它们的广泛应用受到关键限制的阻碍,包括高驱动电压和无法实现可编程模式或多区域可寻址控制。为了解决这些挑战,我们提出了一种通过低压电场(5 V, 1 kHz)的预定向策略,该策略优化了相分离过程中的液晶分子排列。聚合物网络中垂直排列的液晶分子具有扩大的孔结构,减少了LC分子重定向的锚定能垒,使阈值电压(Vth)从20.6 V降低到8.0 V,降低了61.2%。至关重要的是,一个可编程的图案PDLC薄膜成功地利用经济高效的光掩膜。由于相应区域的v值不同,在电压增量的驱动下,PDLC图像化膜呈现出图像化散射态、图像化透明态和全透明态的光传输控制模式。我们的方法不仅可以实现美观设计的节能可调模式(例如徽标或图像),还可以实现多级光调制的可扩展平台,这将推动PDLC技术向低压自适应智能窗口发展,并为智能架构开辟道路,拓宽其应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信