{"title":"A ST-ConvLSTM Network for 3D Human Keypoint Localization Using MmWave Radar.","authors":"Siyuan Wei, Huadong Wang, Yi Mo, Dongping Du","doi":"10.3390/s25185857","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate human keypoint localization in complex environments demands robust sensing and advanced modeling. In this article, we construct a ST-ConvLSTM network for 3D human keypoint estimation via millimeter-wave radar point clouds. The ST-ConvLSTM network processes multi-channel radar image inputs, generated from multi-frame fused point clouds through parallel pathways. These pathways are engineered to extract rich spatiotemporal features from the sequential radar data. The extracted features are then fused and fed into fully connected layers for direct regression of 3D human keypoint coordinates. In order to achieve better network performance, a mmWave radar 3D human keypoint dataset (MRHKD) is built with a hybrid human motion annotation system (HMAS), in which a binocular camera is used to measure the human keypoint coordinates and a 60 GHz 4T4R radar is used to generate radar point clouds. Experimental results demonstrate that the proposed ST-ConvLSTM, leveraging its unique ability to model temporal dependencies and spatial patterns in radar imagery, achieves MAEs of 0.1075 m, 0.0633 m, and 0.1180 m in the horizontal, vertical, and depth directions. This significant improvement underscores the model's enhanced posture recognition accuracy and keypoint localization capability in challenging conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185857","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate human keypoint localization in complex environments demands robust sensing and advanced modeling. In this article, we construct a ST-ConvLSTM network for 3D human keypoint estimation via millimeter-wave radar point clouds. The ST-ConvLSTM network processes multi-channel radar image inputs, generated from multi-frame fused point clouds through parallel pathways. These pathways are engineered to extract rich spatiotemporal features from the sequential radar data. The extracted features are then fused and fed into fully connected layers for direct regression of 3D human keypoint coordinates. In order to achieve better network performance, a mmWave radar 3D human keypoint dataset (MRHKD) is built with a hybrid human motion annotation system (HMAS), in which a binocular camera is used to measure the human keypoint coordinates and a 60 GHz 4T4R radar is used to generate radar point clouds. Experimental results demonstrate that the proposed ST-ConvLSTM, leveraging its unique ability to model temporal dependencies and spatial patterns in radar imagery, achieves MAEs of 0.1075 m, 0.0633 m, and 0.1180 m in the horizontal, vertical, and depth directions. This significant improvement underscores the model's enhanced posture recognition accuracy and keypoint localization capability in challenging conditions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.