{"title":"Drawing-Induced Crimp Formation and Wettability of Four-Lobed Side-by-Side PBT/PET Bicomponent Fibers.","authors":"Xinkang Xu, Pei Feng, Zexu Hu, Jiazheng Wang, Qianchun Xu, Chongchang Yang","doi":"10.3390/polym17182529","DOIUrl":null,"url":null,"abstract":"<p><p>PBT/PET side-by-side bicomponent fibers form helical crimp structures under thermal or mechanical stress, though the mechanism behind mechanically induced crimping remains unclear. In this study, four-lobed cross-sectional PBT/PET side-by-side bicomponent fibers were produced and subjected to drawing from 1.6 to 4.0 times at 80 °C to induce crimping. Increasing draw ratios significantly enhanced fiber tenacity (from 0.64 to 3.91 cN/dtex) and reduced crimp radius (from 2.05 mm to 0.64 mm). A predictive crimp curvature model integrating Denton's crimp theory and a four-element viscoelastic model was established, with corrected results achieving an R<sup>2</sup> of 0.9951. Additionally, four-lobed fibers showed better wettability, with a static contact angle 3.56° lower than that of circular fibers. This work provides theoretical guidance for high-performance self-crimping fiber design.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
PBT/PET side-by-side bicomponent fibers form helical crimp structures under thermal or mechanical stress, though the mechanism behind mechanically induced crimping remains unclear. In this study, four-lobed cross-sectional PBT/PET side-by-side bicomponent fibers were produced and subjected to drawing from 1.6 to 4.0 times at 80 °C to induce crimping. Increasing draw ratios significantly enhanced fiber tenacity (from 0.64 to 3.91 cN/dtex) and reduced crimp radius (from 2.05 mm to 0.64 mm). A predictive crimp curvature model integrating Denton's crimp theory and a four-element viscoelastic model was established, with corrected results achieving an R2 of 0.9951. Additionally, four-lobed fibers showed better wettability, with a static contact angle 3.56° lower than that of circular fibers. This work provides theoretical guidance for high-performance self-crimping fiber design.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.