Víctor Baquero-Aznar, Víctor Calvo, José Miguel González-Domínguez, Wolfgang K Maser, Ana M Benito, María Luisa Salvador, Jaime González-Buesa
{"title":"Novel Egg White Protein-Chitin Nanocrystal Biocomposite Films with Enhanced Functional Properties.","authors":"Víctor Baquero-Aznar, Víctor Calvo, José Miguel González-Domínguez, Wolfgang K Maser, Ana M Benito, María Luisa Salvador, Jaime González-Buesa","doi":"10.3390/polym17182538","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to develop egg white protein (EWP) biocomposite films reinforced with chitin nanocrystals (ChNCs, 1-5 wt.%) by compression molding to overcome the mechanical and barrier limitations of protein-based films for sustainable packaging. ChNC incorporation may modulate film microstructure, crystallinity, and thermal stability, thereby enhancing functional performance. Films were prepared by adding ChNCs either as aqueous suspensions or lyophilized powder, and their structural, thermal, mechanical, optical, and barrier properties were systematically evaluated. Scanning electron microscopy confirmed a more homogeneous dispersion of ChNCs when added as suspensions, while powder addition promoted partial aggregation. X-ray diffraction revealed increased crystallinity with ChNC reinforcement. Mechanical tests showed that films with 2 wt.% ChNCs in suspension exhibited the highest tensile strength, whereas those with 5 wt.% in powder form became stiffer but less extensible. Oxygen permeability was not significantly affected, while water vapor permeability decreased by up to 14.5% at 2 wt.% ChNCs incorporated as powder. Transparency and color remained largely unchanged by ChNC addition, except for a slight increase in yellowness. Overall, these findings demonstrate that the incorporation method and concentration of ChNCs play a crucial role in tailoring the physicochemical performance of EWP films. The results provide new insights into the design of EWP-based nanocomposites and support their potential as bio-derived materials for advanced food packaging applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182538","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop egg white protein (EWP) biocomposite films reinforced with chitin nanocrystals (ChNCs, 1-5 wt.%) by compression molding to overcome the mechanical and barrier limitations of protein-based films for sustainable packaging. ChNC incorporation may modulate film microstructure, crystallinity, and thermal stability, thereby enhancing functional performance. Films were prepared by adding ChNCs either as aqueous suspensions or lyophilized powder, and their structural, thermal, mechanical, optical, and barrier properties were systematically evaluated. Scanning electron microscopy confirmed a more homogeneous dispersion of ChNCs when added as suspensions, while powder addition promoted partial aggregation. X-ray diffraction revealed increased crystallinity with ChNC reinforcement. Mechanical tests showed that films with 2 wt.% ChNCs in suspension exhibited the highest tensile strength, whereas those with 5 wt.% in powder form became stiffer but less extensible. Oxygen permeability was not significantly affected, while water vapor permeability decreased by up to 14.5% at 2 wt.% ChNCs incorporated as powder. Transparency and color remained largely unchanged by ChNC addition, except for a slight increase in yellowness. Overall, these findings demonstrate that the incorporation method and concentration of ChNCs play a crucial role in tailoring the physicochemical performance of EWP films. The results provide new insights into the design of EWP-based nanocomposites and support their potential as bio-derived materials for advanced food packaging applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.