{"title":"A Novel Cyclized Polyacrylonitrile Binder Strategy for Efficient Oxygen Evolution Reaction Catalysts.","authors":"Yifan Gu, Xiaomin Yin, Xinrong Li, Huili Ding, Xiaojie Zhang, Yi Feng","doi":"10.3390/polym17182477","DOIUrl":null,"url":null,"abstract":"<p><p>In alkaline water electrolysis, conventional polymer binders like Nafion suffer from poor hydroxide conductivity and inadequate interfacial properties. Herein, a thermally cyclized polyacrylonitrile (CPAN) binder system with a conjugated ladder structure is introduced. The CPAN binders are synthesized by controlled thermal treatment under various temperatures, among which CPAN-400 demonstrates the optimal 57.03% pyridinic N content, provides π-conjugated pathways for enhanced electronic conductivity, and indicates hierarchically porous electrode architectures. The NiFe/CPAN-400 electrode achieves enhanced oxygen evolution performance with an overpotential of 354 mV at 100 mA cm<sup>-2</sup>, which is 153 mV and 103 mV lower than NiFe-Nafion and NiFe-PAN, respectively. This enhancement results from synergistic effects, including an electrochemically active surface area increased 2.3-fold, improved electrolyte wettability, and optimized charge transfer kinetics. The pyridinic nitrogen-enriched structure also facilitates a rate-determining step transition from charge transfer to *OOH formation, with a Tafel slope of 59.9 mV dec<sup>-1</sup>. This work establishes thermally induced polymer cyclization as a versatile strategy for advanced binder developments.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In alkaline water electrolysis, conventional polymer binders like Nafion suffer from poor hydroxide conductivity and inadequate interfacial properties. Herein, a thermally cyclized polyacrylonitrile (CPAN) binder system with a conjugated ladder structure is introduced. The CPAN binders are synthesized by controlled thermal treatment under various temperatures, among which CPAN-400 demonstrates the optimal 57.03% pyridinic N content, provides π-conjugated pathways for enhanced electronic conductivity, and indicates hierarchically porous electrode architectures. The NiFe/CPAN-400 electrode achieves enhanced oxygen evolution performance with an overpotential of 354 mV at 100 mA cm-2, which is 153 mV and 103 mV lower than NiFe-Nafion and NiFe-PAN, respectively. This enhancement results from synergistic effects, including an electrochemically active surface area increased 2.3-fold, improved electrolyte wettability, and optimized charge transfer kinetics. The pyridinic nitrogen-enriched structure also facilitates a rate-determining step transition from charge transfer to *OOH formation, with a Tafel slope of 59.9 mV dec-1. This work establishes thermally induced polymer cyclization as a versatile strategy for advanced binder developments.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.