From Research Trend to Performance Prediction: Metaheuristic-Driven Machine Learning Optimization for Cement Pastes Containing Bio-Based Phase Change Materials.
Leifa Li, Wangwen Sun, Lauren Y Gómez-Zamorano, Zhuangzhuang Liu, Wenzhen Zhang, Haoran Ma
{"title":"From Research Trend to Performance Prediction: Metaheuristic-Driven Machine Learning Optimization for Cement Pastes Containing Bio-Based Phase Change Materials.","authors":"Leifa Li, Wangwen Sun, Lauren Y Gómez-Zamorano, Zhuangzhuang Liu, Wenzhen Zhang, Haoran Ma","doi":"10.3390/polym17182541","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an integrated approach combining bibliometric analysis and machine learning to explore research trends and predict the performance of cement pastes containing bio-based phase change materials. A bibliometric review of 5928 articles from the Web of Science Core Collection was conducted using CiteSpace (v.6.3.R1) to identify research hotspots. A dataset of 100 experimental samples was compiled, including nine input variables and three output properties identified as thermal conductivity (Tc), latent heat capacity (LH) and compressive strength (CS). Four machine learning algorithms (SVR, RF, XGBoost, and CatBoost) were optimized using five metaheuristic algorithms (GA, PSO, WOA, GWO, and FFA), resulting in 24 optimized hybrid models. Of all the models considered, CatBoost-WOA achieved the best overall performance, with R<sup>2</sup> values of 0.927, 0.955, and 0.944, and RMSEs of 0.0057 W/m·K, 1.84 J/g, and 2.91 MPa for Tc, LH, and CS. Additionally, SVR-GWO and XGBoost-WOA also showed strong generalization and low error dispersion. The developed models provide a transferable and data-driven modeling pipeline for predicting the coupled thermal and mechanical behavior of cement pastes containing bio-based phase change materials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182541","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an integrated approach combining bibliometric analysis and machine learning to explore research trends and predict the performance of cement pastes containing bio-based phase change materials. A bibliometric review of 5928 articles from the Web of Science Core Collection was conducted using CiteSpace (v.6.3.R1) to identify research hotspots. A dataset of 100 experimental samples was compiled, including nine input variables and three output properties identified as thermal conductivity (Tc), latent heat capacity (LH) and compressive strength (CS). Four machine learning algorithms (SVR, RF, XGBoost, and CatBoost) were optimized using five metaheuristic algorithms (GA, PSO, WOA, GWO, and FFA), resulting in 24 optimized hybrid models. Of all the models considered, CatBoost-WOA achieved the best overall performance, with R2 values of 0.927, 0.955, and 0.944, and RMSEs of 0.0057 W/m·K, 1.84 J/g, and 2.91 MPa for Tc, LH, and CS. Additionally, SVR-GWO and XGBoost-WOA also showed strong generalization and low error dispersion. The developed models provide a transferable and data-driven modeling pipeline for predicting the coupled thermal and mechanical behavior of cement pastes containing bio-based phase change materials.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.