{"title":"Biomimetic Functional Fluorinated Oxygen-Containing Coatings on 3D-Printing Composite Polymer Items.","authors":"Georgy Rytikov, Fedor Doronin, Andrey Evdokimov, Mikhail Savel'ev, Yuriy Rudyak, Victor Nazarov","doi":"10.3390/polym17182490","DOIUrl":null,"url":null,"abstract":"<p><p>We manufactured the 3D-printed prototypes with increased wear resistance using a combination of the following: biomimetic design (the shark skin was used as a natural object to follow), 3D-printing technological parameter regulation, rational choice of polymer matrix, dispersed filling ingredients and items' surface gas-phase modification technique. It was established that the bulk modification of the PETG filament with montmorillonite, graphite nano-plates, and other ingredients can reduce the 3D-printed prototypes' wear by up to eight times. The gas-phase fluorination of the product's surface provides a decrease in the rest friction coefficient and temperature in the \"indentor-3D-printed disk\" contact pair. We obtained the texture models and quantified the degree of similarity between the shark skin and the 3D-printed prototypes' surfaces.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182490","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We manufactured the 3D-printed prototypes with increased wear resistance using a combination of the following: biomimetic design (the shark skin was used as a natural object to follow), 3D-printing technological parameter regulation, rational choice of polymer matrix, dispersed filling ingredients and items' surface gas-phase modification technique. It was established that the bulk modification of the PETG filament with montmorillonite, graphite nano-plates, and other ingredients can reduce the 3D-printed prototypes' wear by up to eight times. The gas-phase fluorination of the product's surface provides a decrease in the rest friction coefficient and temperature in the "indentor-3D-printed disk" contact pair. We obtained the texture models and quantified the degree of similarity between the shark skin and the 3D-printed prototypes' surfaces.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.