Ivan Malashin, Dmitry Martysyuk, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, Aleksei Borodulin
{"title":"Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review.","authors":"Ivan Malashin, Dmitry Martysyuk, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, Aleksei Borodulin","doi":"10.3390/polym17182557","DOIUrl":null,"url":null,"abstract":"<p><p>This paper surveys the application of machine learning in fiber composite manufacturing, highlighting its role in adaptive process control, defect detection, and real-time quality assurance. First, the need for ML in composite processing is highlighted, followed by a review of data-driven approaches-including predictive modeling, sensor fusion, and adaptive control-that address material heterogeneity and process variability. An in-depth analysis examines six case studies, among which are XPBD-based surrogates for RL-driven robotic draping, hyperspectral imaging (HSI) with U-Net segmentation for adhesion prediction, and CNN-driven surrogate optimization for variable-geometry forming. Building on these insights, a hybrid AI model architecture is proposed for natural-fiber composites, integrating a physics-informed GNN surrogate, a 3D Spectral-UNet for defect segmentation, and a cross-attention controller for closed-loop parameter adjustment. Validation on synthetic data-including visualizations of HSI segmentation, graph topologies, and controller action weights-demonstrates end-to-end operability. The discussion addresses interpretability, domain randomization, and sim-to-real transfer and highlights emerging trends such as physics-informed neural networks and digital twins. This paper concludes by outlining future challenges in small-data regimes and industrial scalability, thereby providing a comprehensive roadmap for ML-enabled composite manufacturing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182557","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper surveys the application of machine learning in fiber composite manufacturing, highlighting its role in adaptive process control, defect detection, and real-time quality assurance. First, the need for ML in composite processing is highlighted, followed by a review of data-driven approaches-including predictive modeling, sensor fusion, and adaptive control-that address material heterogeneity and process variability. An in-depth analysis examines six case studies, among which are XPBD-based surrogates for RL-driven robotic draping, hyperspectral imaging (HSI) with U-Net segmentation for adhesion prediction, and CNN-driven surrogate optimization for variable-geometry forming. Building on these insights, a hybrid AI model architecture is proposed for natural-fiber composites, integrating a physics-informed GNN surrogate, a 3D Spectral-UNet for defect segmentation, and a cross-attention controller for closed-loop parameter adjustment. Validation on synthetic data-including visualizations of HSI segmentation, graph topologies, and controller action weights-demonstrates end-to-end operability. The discussion addresses interpretability, domain randomization, and sim-to-real transfer and highlights emerging trends such as physics-informed neural networks and digital twins. This paper concludes by outlining future challenges in small-data regimes and industrial scalability, thereby providing a comprehensive roadmap for ML-enabled composite manufacturing.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.