{"title":"Salt Cocrystallization-A Method to Improve Solubility and Bioavailability of Dihydromyricetin.","authors":"Jingping Li, Xinke Chen, Yanan Liu, Caiwu Jiang","doi":"10.3390/pharmaceutics17091209","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: This study aimed to find salts with similar pharmacological effects designed as cocrystals to improve the aqueous solubility and bioavailability of dihydromyricetin (DMY). <b>Methods</b>: A salt-cocrystal solvate (DMY-CIP·C<sub>2</sub>H<sub>6</sub>O) of dihydromyricetin and ciprofloxacin hydrochloride (CIP) was successfully prepared via solvent evaporation method, and further characterized using powder X-ray diffraction, thermal analysis, and infrared spectroscopy. The solubility, stability, bioavailability, and in vitro antimicrobial efficacy of the cocrystal were also studied. <b>Results</b>: The cocrystal could increase the solubility of DMY in water and greatly improve the absorption of DMY in vivo (8-fold enhancement in relative bioavailability). In addition, the in vitro antimicrobial efficacy of the cocrystal was comparable to that of CIP, which is a great improvement for DMY. However, due to the formation of cocrystals with salts, the humidity stability of DMY is reduced and it should not be stored in high-humidity environments. <b>Conclusions</b>: These findings demonstrate that cocrystallization with water-soluble salts represents an effective strategy for optimizing the pharmaceutical properties of poorly soluble compounds.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091209","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to find salts with similar pharmacological effects designed as cocrystals to improve the aqueous solubility and bioavailability of dihydromyricetin (DMY). Methods: A salt-cocrystal solvate (DMY-CIP·C2H6O) of dihydromyricetin and ciprofloxacin hydrochloride (CIP) was successfully prepared via solvent evaporation method, and further characterized using powder X-ray diffraction, thermal analysis, and infrared spectroscopy. The solubility, stability, bioavailability, and in vitro antimicrobial efficacy of the cocrystal were also studied. Results: The cocrystal could increase the solubility of DMY in water and greatly improve the absorption of DMY in vivo (8-fold enhancement in relative bioavailability). In addition, the in vitro antimicrobial efficacy of the cocrystal was comparable to that of CIP, which is a great improvement for DMY. However, due to the formation of cocrystals with salts, the humidity stability of DMY is reduced and it should not be stored in high-humidity environments. Conclusions: These findings demonstrate that cocrystallization with water-soluble salts represents an effective strategy for optimizing the pharmaceutical properties of poorly soluble compounds.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.