Lulwah Al-Bassam, Mohammed M Naiyer, Christopher J Morris, Steve Brocchini, Gareth R Williams
{"title":"Selenium Nanoparticles: Synthesis, Stability and In Vitro Evaluation in Human Lens Epithelial Cells.","authors":"Lulwah Al-Bassam, Mohammed M Naiyer, Christopher J Morris, Steve Brocchini, Gareth R Williams","doi":"10.3390/pharmaceutics17091157","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) in human lens epithelial (HLE) cells. <b>Methods</b>: SeNPs were synthesised by reducing sodium selenite with ascorbic acid in the presence of TPGS. Physicochemical characterisation was carried out using dynamic light scattering to assess size and surface charge. Antioxidant activity was measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Cytocompatibility was assessed on adult retinal pigment epithelial (ARPE-19) and HLE cells using PrestoBlue. Functional antioxidant performance was determined through enzymatic assays for glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and glutathione (GSH), and lipid peroxidation was assessed using malondialdehyde (MDA) quantification. Catalase mimicry was evaluated under 3-amino-1,2,4-triazole (3-AT)-induced inhibition. <b>Results</b>: The optimal SeNP formulation had an average hydrodynamic diameter of 44 ± 3 nm, low PDI (<0.1), and a surface charge of -15 ± 3 mV. These TPGS-SeNPs demonstrated strong radical scavenging (EC<sub>50</sub> ≈ 1.55 µg/mL) and were well tolerated by ARPE-19 cells (IC<sub>50</sub> = 524 µg/mL), whereas HLE cells had a narrower biocompatibility window (≤0.4 µg/mL, IC<sub>50</sub> = 2.2 µg/mL). Under oxidative stress, SeNPs significantly enhanced GPx and TrxR activity but did not affect GSH or MDA levels. No catalase-mimetic activity was observed. <b>Conclusions</b>: TPGS-SeNPs exhibit potent antioxidant enzyme modulation under stress conditions in HLE cells. Although not affecting all oxidative markers, these nanoparticles show promise for non-invasive strategies targeting lens-associated oxidative damage, including cataract prevention.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091157","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Oxidative stress plays a critical role in the development of ocular diseases such as cataracts. Selenium nanoparticles (SeNPs) offer antioxidant benefits with low toxicity. This study aimed to evaluate the antioxidant activity of SeNPs coated with D-α-tocopheryl polyethylene glycol succinate (TPGS) in human lens epithelial (HLE) cells. Methods: SeNPs were synthesised by reducing sodium selenite with ascorbic acid in the presence of TPGS. Physicochemical characterisation was carried out using dynamic light scattering to assess size and surface charge. Antioxidant activity was measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Cytocompatibility was assessed on adult retinal pigment epithelial (ARPE-19) and HLE cells using PrestoBlue. Functional antioxidant performance was determined through enzymatic assays for glutathione peroxidase (GPx), thioredoxin reductase (TrxR), and glutathione (GSH), and lipid peroxidation was assessed using malondialdehyde (MDA) quantification. Catalase mimicry was evaluated under 3-amino-1,2,4-triazole (3-AT)-induced inhibition. Results: The optimal SeNP formulation had an average hydrodynamic diameter of 44 ± 3 nm, low PDI (<0.1), and a surface charge of -15 ± 3 mV. These TPGS-SeNPs demonstrated strong radical scavenging (EC50 ≈ 1.55 µg/mL) and were well tolerated by ARPE-19 cells (IC50 = 524 µg/mL), whereas HLE cells had a narrower biocompatibility window (≤0.4 µg/mL, IC50 = 2.2 µg/mL). Under oxidative stress, SeNPs significantly enhanced GPx and TrxR activity but did not affect GSH or MDA levels. No catalase-mimetic activity was observed. Conclusions: TPGS-SeNPs exhibit potent antioxidant enzyme modulation under stress conditions in HLE cells. Although not affecting all oxidative markers, these nanoparticles show promise for non-invasive strategies targeting lens-associated oxidative damage, including cataract prevention.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.